A017459
a(n) = (11*n + 5)^11.
Original entry on oeis.org
48828125, 17592186044416, 5559060566555523, 238572050223552512, 3909821048582988049, 36279705600000000000, 231122292121701565271, 1127073856954876807168, 4501035456767426597157, 15394540563150776827904
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Powers of the form (11*n+5)^m:
A017449 (m=1),
A017450 (m=2),
A017451 (m=3),
A017452 (m=4),
A017453 (m=5),
A017454 (m=6),
A017455 (m=7),
A017456 (m=8),
A017457 (m=9),
A017458 (m=10), this sequence (m=11),
A017460 (m=12).
-
List([0..20], n-> (11*n+5)^11); # G. C. Greubel, Sep 19 2019
-
[(11*n+5)^11: n in [0..10]]; // Vincenzo Librandi, Sep 03 2011
-
seq((11*n+5)^11, n=0..20); # G. C. Greubel, Sep 19 2019
-
(11Range[0,20]+5)^11 (* Harvey P. Dale, May 12 2011 *)
-
vector(20, n, (11*n-6)^11) \\ G. C. Greubel, Sep 19 2019
-
[(11*n+5)^11 for n in (0..20)] # G. C. Greubel, Sep 19 2019
A017460
a(n) = (11*n + 5)^12.
Original entry on oeis.org
244140625, 281474976710656, 150094635296999121, 9065737908494995456, 191581231380566414401, 2176782336000000000000, 16409682740640811134241, 92420056270299898187776, 418596297479370673535601, 1601032218567680790102016
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Powers of the form (11*n+5)^m:
A017449 (m=1),
A017450 (m=2),
A017451 (m=3),
A017452 (m=4),
A017453 (m=5),
A017454 (m=6),
A017455 (m=7),
A017456 (m=8),
A017457 (m=9),
A017458 (m=10),
A017459 (m=11), this sequence (m=12).
-
List([0..20], n-> (11*n+5)^12); # G. C. Greubel, Sep 19 2019
-
[(11*n+5)^12: n in [0..10]]; // Vincenzo Librandi, Sep 03 2011
-
seq((11*n+5)^12, n=0..20); # G. C. Greubel, Sep 19 2019
-
(11*Range[21] -6)^12 (* G. C. Greubel, Sep 19 2019 *)
-
vector(20, n, (11*n-6)^12) \\ G. C. Greubel, Sep 19 2019
-
[(11*n+5)^12 for n in (0..20)] # G. C. Greubel, Sep 19 2019
A083487
Triangle read by rows: T(n,k) = 2*n*k + n + k (1 <= k <= n).
Original entry on oeis.org
4, 7, 12, 10, 17, 24, 13, 22, 31, 40, 16, 27, 38, 49, 60, 19, 32, 45, 58, 71, 84, 22, 37, 52, 67, 82, 97, 112, 25, 42, 59, 76, 93, 110, 127, 144, 28, 47, 66, 85, 104, 123, 142, 161, 180, 31, 52, 73, 94, 115, 136, 157, 178, 199, 220, 34, 57, 80, 103, 126, 149, 172, 195, 218, 241, 264
Offset: 1
Artemario Tadeu Medeiros da Silva (artemario(AT)uol.com.br), Jun 09 2003
Triangle begins:
4;
7, 12;
10, 17, 24;
13, 22, 31, 40;
16, 27, 38, 49, 60;
19, 32, 45, 58, 71, 84;
22, 37, 52, 67, 82, 97, 112;
25, 42, 59, 76, 93, 110, 127, 144;
28, 47, 66, 85, 104, 123, 142, 161, 180;
-
[(2*n*k + n + k): k in [1..n], n in [1..11]]; // Vincenzo Librandi, Jun 01 2014
-
T[n_,k_]:= 2 n k + n + k; Table[T[n, k], {n, 10}, {k, n}]//Flatten (* Vincenzo Librandi, Jun 01 2014 *)
-
def T(r, c): return 2*r*c + r + c
a = [T(r, c) for r in range(12) for c in range(1, r+1)]
print(a) # Michael S. Branicky, Sep 07 2022
-
flatten([[2*n*k +n +k for k in range(1,n+1)] for n in range(1,14)]) # G. C. Greubel, Oct 17 2023
A153384
Numbers n such that 24*n+1 is not prime.
Original entry on oeis.org
0, 1, 2, 5, 6, 7, 9, 11, 12, 15, 16, 20, 21, 22, 23, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 49, 51, 53, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 68, 70, 71, 72, 76, 77, 79, 80, 81, 82, 85, 86, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102
Offset: 1
Triangle begins:
*;
*,1;
*,*,2;
*,*,*,*;
*,*,*,*,5;
*,*,*,*,*,7;
*,*,*,*,*,*,*;
*,*,*,*,*,*,*,12;
*,*,*,*,*,*,*,*,15;
*,*,*,*,*,*,*,*,*,*;
*,*,*,*,*,*,*,*,*,*,22; etc.
where * marks the non-integer values of (2*h*k + k + h)/12 with h >= k >= 1. - _Vincenzo Librandi_, Jan 14 2013
A168463
a(n) = 5 + 11*floor(n/2).
Original entry on oeis.org
5, 16, 16, 27, 27, 38, 38, 49, 49, 60, 60, 71, 71, 82, 82, 93, 93, 104, 104, 115, 115, 126, 126, 137, 137, 148, 148, 159, 159, 170, 170, 181, 181, 192, 192, 203, 203, 214, 214, 225, 225, 236, 236, 247, 247, 258, 258, 269, 269, 280, 280, 291, 291, 302, 302, 313
Offset: 1
-
[5+11*Floor(n/2): n in [1..70]]; // Vincenzo Librandi, Sep 19 2013
-
Table[5 + 11 Floor[n/2], {n, 70}] (* or *) CoefficientList[Series[(5 + 11 x - 5 x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *)
LinearRecurrence[{1,1,-1},{5,16,16},80] (* Harvey P. Dale, Aug 28 2019 *)
A355668
Array read by upwards antidiagonals T(n,k) = J(k) + n*J(k+1) where J(n) = A001045(n) is the Jacobsthal numbers.
Original entry on oeis.org
0, 1, 1, 2, 2, 1, 3, 3, 4, 3, 4, 4, 7, 8, 5, 5, 5, 10, 13, 16, 11, 6, 6, 13, 18, 27, 32, 21, 7, 7, 16, 23, 38, 53, 64, 43, 8, 8, 19, 28, 49, 74, 107, 128, 85, 9, 9, 22, 33, 60, 95, 150, 213, 256, 171, 10, 10, 25, 38, 71, 116, 193, 298, 427, 512, 341
Offset: 0
Row n=0 is A001045(k), then for further rows we successively add A001045(k+1).
k=0 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
n=0: 0 1 1 3 5 11 21 43 85 171 ... = A001045
n=1: 1 2 4 8 16 32 64 128 256 512 ... = A000079
n=2: 2 3 7 13 27 53 107 213 427 853 ... = A048573
n=3: 3 4 10 18 38 74 150 298 598 1194 ... = A171160
n=4: 4 5 13 23 49 95 193 383 769 1535 ... = abs(A140683)
...
Antidiagonal sums give
A320933(n+1).
-
T[n_, k_] := (2^k - (-1)^k + n*(2^(k + 1) + (-1)^k))/3; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 13 2022 *)
Comments