cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A271994 The chalcogen sequence (a(n) = A018227(n)-2).

Original entry on oeis.org

8, 16, 34, 52, 84, 116, 166, 216, 288, 360, 458, 556, 684, 812, 974, 1136, 1336, 1536, 1778, 2020, 2308, 2596, 2934, 3272, 3664, 4056, 4506, 4956, 5468, 5980, 6558, 7136, 7784, 8432, 9154, 9876, 10676, 11476, 12358, 13240, 14208, 15176, 16234, 17292, 18444
Offset: 2

Views

Author

Natan Arie Consigli, May 28 2016

Keywords

Comments

Terms up to 116 are the atomic numbers of the elements of group 16 in the periodic table. Those elements are also known as chalcogens.

Programs

  • Mathematica
    Table[(2 n^3 + 12 n^2 + 25 n + (-1)^n 3 (n + 2) - 30)/12, {n, 2, 43}] (* or *)
    Drop[#, 2] &@ CoefficientList[Series[2 x^2 (4 - 3 x^2 + x^4)/((1 - x)^4 (1 + x)^2), {x, 0, 43}], x] (* Michael De Vlieger, May 29 2016 *)
    LinearRecurrence[{2,1,-4,1,2,-1},{8,16,34,52,84,116},50] (* Harvey P. Dale, Sep 24 2022 *)
  • PARI
    Vec(2*x^2*(4-3*x^2+x^4)/((1-x)^4*(1+x)^2) + O(x^50)) \\ Colin Barker, May 29 2016

Formula

From Colin Barker, May 29 2016: (Start)
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6) for n>7.
G.f.: 2*x^2*(4-3*x^2+x^4) / ((1-x)^4*(1+x)^2).
(End)
a(n) = (2*n^3 + 12*n^2 + 25*n + (-1)^n*3*(n + 2) - 30)/12. - Ilya Gutkovskiy, May 29 2016

A271995 The Pnictogen sequence: a(n) = A018227(n)-3.

Original entry on oeis.org

7, 15, 33, 51, 83, 115, 165, 215, 287, 359, 457, 555, 683, 811, 973, 1135, 1335, 1535, 1777, 2019, 2307, 2595, 2933, 3271, 3663, 4055, 4505, 4955, 5467, 5979, 6557, 7135, 7783, 8431, 9153, 9875, 10675, 11475, 12357, 13239, 14207, 15175, 16233, 17291, 18443
Offset: 2

Views

Author

Natan Arie Consigli, Jun 18 2016

Keywords

Comments

Terms up to 115 are the atomic numbers of the elements of group 15 in the periodic table. Those elements are also known as pnictogens.

Crossrefs

Cf. A018227.

Programs

  • Mathematica
    LinearRecurrence[{2,1,-4,1,2,-1},{7,15,33,51,83,115},50] (* Harvey P. Dale, Oct 29 2023 *)
  • PARI
    Vec(x^2*(7+x-4*x^2-2*x^3+x^4+x^5)/((1-x)^4*(1+x)^2) + O(x^100)) \\ Colin Barker, Jun 19 2016, corrected Jun 26 2016

Formula

From Colin Barker, Jun 19 2016, corrected Jun 26 2016: (Start)
a(n) = (6*(-7+(-1)^n)+(25+3*(-1)^n)*n+12*n^2+2*n^3)/12.
a(n) = (n^3+6*n^2+14*n-18)/6 for n even.
a(n) = (n^3+6*n^2+11*n-24)/6 for n odd.
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6) for n>7.
G.f.: x^2*(7+x-4*x^2-2*x^3+x^4+x^5) / ((1-x)^4*(1+x)^2).
(End)

A271996 The crystallogen sequence (a(n) = A018227(n)-4).

Original entry on oeis.org

6, 14, 32, 50, 82, 114, 164, 214, 286, 358, 456, 554, 682, 810, 972, 1134, 1334, 1534, 1776, 2018, 2306, 2594, 2932, 3270, 3662, 4054, 4504, 4954, 5466, 5978, 6556, 7134, 7782, 8430, 9152, 9874, 10674, 11474, 12356, 13238, 14206, 15174, 16232, 17290, 18442
Offset: 2

Views

Author

Natan Arie Consigli, Jun 18 2016

Keywords

Comments

Terms up to 114 are the atomic numbers of the elements of group 14 in the periodic table. Those elements are also called crystallogens.

Crossrefs

Programs

  • Mathematica
    Table[(6*(-9+(-1)^n)+(25+3*(-1)^n)*n+12*n^2+2*n^3)/12, {n, 2, 10}] (* or *) LinearRecurrence[{2, 1, -4, 1, 2, -1}, {6, 14, 32, 50, 82, 114}, 50] (* G. C. Greubel, Jun 23 2016 *)
  • PARI
    Vec(2*x^2*(3+x-x^2-2*x^3+x^5)/((1-x)^4*(1+x)^2) + O(x^100)) \\ Colin Barker, Jun 19 2016

Formula

From Colin Barker, Jun 19 2016: (Start)
a(n) = (6*(-9 + (-1)^n) + (25 + 3*(-1)^n)*n + 12*n^2 + 2*n^3)/12.
a(n) = (n^3 + 6*n^2 + 14*n - 24)/6 for n even.
a(n) = (n^3 + 6*n^2 + 11*n - 30)/6 for n odd.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>7.
G.f.: 2*x^2*(3 + x - x^2 - 2*x^3 + x^5) / ((1-x)^4*(1+x)^2).
(End)

A271997 The icosagen sequence : a(n) = A018227(n)-5, for n >= 2.

Original entry on oeis.org

5, 13, 31, 49, 81, 113, 163, 213, 285, 357, 455, 553, 681, 809, 971, 1133, 1333, 1533, 1775, 2017, 2305, 2593, 2931, 3269, 3661, 4053, 4503, 4953, 5465, 5977, 6555, 7133, 7781, 8429, 9151, 9873, 10673, 11473, 12355, 13237, 14205, 15173, 16231, 17289, 18441
Offset: 2

Views

Author

Natan Arie Consigli, Jun 19 2016

Keywords

Comments

Terms up to 113 are the atomic numbers of the elements of group 13 in the periodic table. Those elements are also called icosagens.

Programs

  • Mathematica
    Table[n*((n+3)^2 + 2)/6 + (n+2)*(1+(-1)^n)/4 - 6, {n,2,10}] (* or *) LinearRecurrence[{2,1,-4,1,2,-1},{5, 13, 31, 49, 81, 113},50] (* G. C. Greubel, Jun 23 2016 *)

Formula

From G. C. Greubel, Jun 23 2016: (Start)
a(n) = n*((n+3)^2 + 2)/6 + (n+2)*(1+(-1)^n)/4 - 6, for n >= 2.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: x^2 * (5 + 3*x - 6*x^3 - x^4 + 3*x^5)/( (1-x)^4 * (1+x)^2 ). (End)

A271998 Volatile sequence: a(n) = A018227(n)-6.

Original entry on oeis.org

30, 48, 80, 112, 162, 212, 284, 356, 454, 552, 680, 808, 970, 1132, 1332, 1532, 1774, 2016, 2304, 2592, 2930, 3268, 3660, 4052, 4502, 4952, 5464, 5976, 6554, 7132, 7780, 8428, 9150, 9872, 10672, 11472, 12354, 13236, 14204, 15172, 16230, 17288, 18440
Offset: 3

Views

Author

Natan Arie Consigli, Jun 27 2016

Keywords

Comments

Terms up to 112 are the atomic numbers of the elements of group 12 in the periodic table. The group is also known as the volatile metals since almost all elements with that property fall in to group 12.

Programs

  • Mathematica
    LinearRecurrence[{2,1,-4,1,2,-1},{30,48,80,112,162,212},50] (* Harvey P. Dale, Mar 07 2022 *)
  • PARI
    Vec(2*x^3*(15-6*x-23*x^2+12*x^3+10*x^4-6*x^5)/((1-x)^4*(1+x)^2) + O(x^60)) \\ Colin Barker, Oct 25 2016

Formula

From Colin Barker, Oct 25 2016: (Start)
G.f.: 2*x^3*(15 - 6*x - 23*x^2 + 12*x^3 + 10*x^4 - 6*x^5)/((1 - x)^4*(1 + x)^2).
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>8.
a(n) = (n^3 + 9*n^2 + 26*n - 24)/6 for n even.
a(n) = (n^3 + 9*n^2 + 29*n - 15)/6 for n odd. (End)

A271999 Halogen sequence: a(n) = A018227(n)-1.

Original entry on oeis.org

1, 11, 17, 35, 53, 85, 117, 167, 217, 289, 361, 459, 557, 685, 813, 975, 1137, 1337, 1537, 1779, 2021, 2309, 2597, 2935, 3273, 3665, 4057, 4507, 4957, 5469, 5981, 6559, 7137, 7785, 8433, 9155, 9877, 10677, 11477, 12359, 13241, 14209, 15177, 16235, 17293
Offset: 1

Views

Author

Natan Arie Consigli, Jul 02 2016

Keywords

Comments

Terms from 11 to 117 are the atomic numbers of the elements in group 17 in the periodic table. The elements in this group are also called halogens.

Programs

  • Mathematica
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 11, 17, 35, 53, 85, 117, 167}, 50] (* Paolo Xausa, Oct 21 2024 *)
  • PARI
    Vec(x*(1 + 9*x - 6*x^2 - 6*x^3 + 9*x^4 - x^5 - 4*x^6 + 2*x^7) / ((1 - x)^4*(1 + x)^2) + O(x^50)) \\ Colin Barker, Nov 14 2017

Formula

From Colin Barker, Nov 14 2017: (Start)
G.f.: x*(1 + 9*x - 6*x^2 - 6*x^3 + 9*x^4 - x^5 - 4*x^6 + 2*x^7) / ((1 - x)^4*(1 + x)^2).
a(n) = (1/12)*(2*n^3 + 12*n^2 + 28*n - 12) for n>2 and even.
a(n) = (1/12)*(2*n^3 + 12*n^2 + 22*n - 24) for n>2 and odd.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>8.
(End)

A272000 Coinage sequence: a(n) = A018227(n)-7.

Original entry on oeis.org

3, 11, 29, 47, 79, 111, 161, 211, 283, 355, 453, 551, 679, 807, 969, 1131, 1331, 1531, 1773, 2015, 2303, 2591, 2929, 3267, 3659, 4051, 4501, 4951, 5463, 5975, 6553, 7131, 7779, 8427, 9149, 9871, 10671, 11471, 12353, 13235, 14203, 15171, 16229, 17287, 18439
Offset: 1

Views

Author

Natan Arie Consigli, Jul 02 2016

Keywords

Comments

Terms from 29 to 111 are the atomic numbers of the elements of group 11 in the periodic table. The group is also known as the coinage metals since copper (element 29), silver (element 47) and gold (element 79) are in group 11.

Crossrefs

Other groups: 1(A219527), 2(A168380), 3(A168388), 12(A271998), 13(A271997), 14(A271996), 15(A271995), 16(A271994), 17(A271999), 18(A018227).

Programs

  • Mathematica
    LinearRecurrence[{2,1,-4,1,2,-1},{3,11,29,47,79,111},50] (* Harvey P. Dale, Nov 26 2018 *)
  • PARI
    Vec(x*(3+5*x+4*x^2-10*x^3-3*x^4+5*x^5)/((1-x)^4*(1+x)^2) + O(x^60)) \\ Colin Barker, Oct 25 2016

Formula

From Colin Barker, Oct 25 2016: (Start)
G.f.: x*(3 + 5*x + 4*x^2 - 10*x^3 - 3*x^4 + 5*x^5)/((1 - x)^4*(1 + x)^2).
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>6.
a(n) = (n^3 + 9*n^2 + 26*n - 30)/6 for n even.
a(n) = (n^3 + 9*n^2 + 29*n - 21)/6 for n odd. (End)

A137306 Related to A018226 and A018227: due to the stable element 118 (last term in A018227) this is submitted as a suggested new observed list with 459 as a probable next new atomic weight stable island.

Original entry on oeis.org

2, 8, 20, 28, 50, 83, 118, 126, 168, 194, 298
Offset: 1

Views

Author

Roger L. Bagula, Apr 20 2008

Keywords

Comments

"These are crucial to the notion of an 'island of stability', which Glenn Seaborg espoused."

References

  • Y. Oganessian, J. Phys. G: Nucl. Part. Phys, 2007, iop.org
  • Rosenfeld, L. (1948). Nuclear Forces. Interscience Publishers, New York, xvii.
  • G. T. Seaborg - Contemporary Physics, 2004, informaworld.com

Crossrefs

Programs

  • Mathematica
    (* nuclear radius visualization from Rosenfeld*) Clear[r, A, r0, p, n, m] A[p_, n_] := If[p == 0, 1, p + n] r0 = 1.3214405*10^(-13); r[p_, n_] := r0*( 1 + 0.8*(n/A[p, n])^2 - 0.3/A[p, n]^(1/3) + 0.010*p^2/A[p, n]^(4/3)) a0 = Table[Table[r[p, n], {n, p, Floor[2*p]}], {p, 0, 120}]; ListPlot[Flatten[a0]]

Formula

Roughly a(n) = Floor[1.53*a(n-1)]

Extensions

Definition not clear to me. - N. J. A. Sloane, Apr 25 2008

A018226 Magic numbers of nucleons: nuclei with one of these numbers of either protons or neutrons are more stable against nuclear decay.

Original entry on oeis.org

2, 8, 20, 28, 50, 82, 126
Offset: 1

Views

Author

John Raithel (raithel(AT)rahul.net)

Keywords

Comments

In the shell model for the nucleus, magic numbers are the numbers of either protons or neutrons at which a shell is filled.
First seven positive terms of A162626. - Omar E. Pol, Jul 07 2009
Steppenbeck: "The results of the experiment indicate that 54Ca's first excited state lies at a relatively high energy, which is characteristic of a large nuclear shell gap, thus indicating that N = 34 in 54Ca is a new magic number, as predicted theoretically by the University of Tokyo group in 2001. By conducting a more detailed comparison to nuclear theory the researchers were able to show that the N = 34 magic number is equally as significant as some other nuclear shell gaps."

References

  • Dictionary of Science (Simon and Schuster), see the entry for "Magic number".

Crossrefs

Cf. A018227 Number of electrons (which equals number of protons) such that they are arranged into complete shells within the atom.

Formula

If 1 <= n <= 3 then a(n)=n*(n+1)*(n+2)/3, else if 4 <= n <= 7 then a(n)=n(n^2+5)/3. - Omar E. Pol, Jul 07 2009 [This needs to be clarified. - Joerg Arndt, May 03 2011]
From Daniel Forgues, May 03 2011: (Start)
If 1 <= n <= 3 then a(n) = 2 T_n, else
if 4 <= n <= 7 then a(n) = 2 (T_n - t_{n-1}),
where T_n is the n-th tetrahedral number, t_n the n-th triangular number.
G.f.: (2*x*(1 - 6*x^3 + 14*x^4 - 11*x^5 + 3*x^6))/(1 - x)^4, 1 <= n <= 7.
Using those formulas for n >= 0 gives A162626. (End)
a(n) = n*(n^2+5)/3 + (4*n-6)*A171386(n). - Omar E. Pol, Aug 14 2013

A099955 Atomic numbers in first column in the Mendeleyev periodic table of elements.

Original entry on oeis.org

1, 3, 11, 19, 37, 55, 87
Offset: 1

Views

Author

Parthasarathy Nambi, Nov 12 2004

Keywords

Comments

Atomic numbers of hydrogen and then the alkali metals.

Examples

			The atomic number of sodium is 11.
		

Crossrefs

Cf. A099956, alkaline earth metals; A101648, metalloids; A101647, nonmetals (except halogens and noble gases); A097478, halogens; A018227, noble gases; A101649, poor metals.

Formula

a(n) = A018227(n-1) + 1. - Lekraj Beedassy, Mar 31 2006

Extensions

Edited by N. J. A. Sloane at the suggestion of Lekraj Beedassy, Jan 13 2008
Showing 1-10 of 21 results. Next