cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 88 results. Next

A138869 Concatenation of first two digits and last two digits of n-th even superperfect number A061652(n).

Original entry on oeis.org

22, 44, 1616, 6464, 4096, 6536, 2644, 1024, 1176, 3056, 8164, 8564, 3476, 2664, 5244, 7304, 2276, 1236, 9596, 1404, 2356, 1776, 1496, 2136, 2276, 2056, 4236, 2604, 2604, 2556, 3724, 8744, 6496, 2064, 4056, 3176, 6336, 2196, 4636, 6224, 1404, 6124, 1536, 6236, 1064, 8476, 1556
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2008

Keywords

Comments

Also, concatenation of first two digits and last two digits of n-th superperfect number A019279(n), if there are no odd superperfect numbers.

Crossrefs

Extensions

More terms from Jinyuan Wang, Mar 14 2020

A138871 Last 3 digits of n-th even superperfect number A061652(n).

Original entry on oeis.org

2, 4, 16, 64, 96, 536, 144, 824, 976, 56, 64, 864, 576, 64, 544, 504, 176, 536, 496, 304, 56, 776, 96, 736, 376, 256, 336, 104, 504, 656, 224, 944, 296, 264, 856, 576, 136, 896, 536, 24, 704, 624, 936, 936, 464, 376, 256, 976
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2008

Keywords

Comments

Also, last 3 digits of n-th superperfect number A019279(n), if there are no odd superperfect numbers.

Crossrefs

Formula

a(n) = 2^(A000043(n)-1) mod 1000. - Max Alekseyev, Feb 16 2024

Extensions

More terms from R. J. Mathar, Feb 05 2010
a(40)-a(41) from Max Alekseyev, Feb 11 2012
a(42)-a(47) from Jinyuan Wang, Mar 14 2020
a(48) from Max Alekseyev, Feb 16 2024

A138872 Concatenation of first 3 digits and last 3 digits of n-th even superperfect number A061652(n).

Original entry on oeis.org

22, 44, 1616, 6464, 409096, 655536, 262144, 107824, 115976, 309056, 811064, 850864, 343576, 265064, 520544, 737504, 223176, 129536, 953496, 142304, 239056, 173776, 140096, 215736, 224376, 201256, 427336, 268104, 260504, 256656, 373224, 870944
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2008

Keywords

Comments

Also, concatenation of first 3 digits and last 3 digits of n-th superperfect number A019279(n), if there are no odd superperfect numbers.

Crossrefs

Extensions

More terms from Max Alekseyev, Feb 11 2012

A138882 Triangle read by rows: row n lists divisors of n-th even superperfect number A061652(n).

Original entry on oeis.org

1, 2, 1, 2, 4, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 32, 64, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384
Offset: 1

Views

Author

Omar E. Pol, Apr 11 2008

Keywords

Comments

The number of divisors of n-th even superperfect number is equal to A000043(n), then row n has A000043(n) terms.
The sum of divisors of n-th even superperfect number is equal to n-th Mersenne prime A000668(n), then n-th row sum is equal to A000668(n).

Examples

			Triangle begins:
  1, 2
  1, 2, 4
  1, 2, 4, 8, 16
  1, 2, 4, 8, 16, 32, 64
  1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096
  ...
==============================================================
..... Mersenne ..............................................
....... prime ...............................................
n ... A000668(n) = Sum of divisors of A061652(n) .............
==============================================================
1 ........ 3 ... = 1+2
2 ........ 7 ... = 1+2+4
3 ....... 31 ... = 1+2+4+8+16
4 ...... 127 ... = 1+2+4+8+16+32+64
5 ..... 8191 ... = 1+2+4+8+16+32+64+128+256+512+1024+2048+4096
		

Crossrefs

Programs

  • Mathematica
    Flatten[Divisors[2^(MersennePrimeExponent[Range[7]]-1)]] (* Harvey P. Dale, Apr 28 2022 *)

A147648 Number of distinct even superperfect numbers dividing n.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2
Offset: 1

Views

Author

Omar E. Pol, Nov 09 2008

Keywords

Comments

Also, numbers of distinct superperfect numbers dividing n, if there are no odd superperfect numbers.

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, 1 &, And[EvenQ@ #, Nest[DivisorSigma[1, #] &, #, 2] == 2 #] &] &, 105] (* Michael De Vlieger, Nov 06 2018 *)
  • PARI
    A147648(n) = sumdiv(n,d,(!(d%2)&&(sigma(sigma(d))==(2*d)))); \\ Antti Karttunen, Nov 06 2018

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=1} 1/A061652(n) = 0.828388215042... . - Amiram Eldar, Jan 01 2024

A153476 Sum of first n even superperfect numbers A061652, divided by 2.

Original entry on oeis.org

1, 3, 11, 43, 2091, 34859, 165931, 537036843, 576460752840460331, 154742505487133287202850859, 40564973949808827981181705422891, 42535336430091257741749807110676449323
Offset: 1

Views

Author

Omar E. Pol, Dec 27 2008

Keywords

Comments

Also, sum of first n superperfect numbers A019279, divided by 2, if there are no odd superperfect numbers.

Crossrefs

Formula

a(n) = A153475(n)/2 [From Max Alekseyev, Jul 27 2009]

Extensions

More terms from Max Alekseyev, Jul 27 2009

A324256 Larger of super amicable pair m < n defined by sigma(sigma(m)) = sigma(sigma(n)) = m + n.

Original entry on oeis.org

37, 28201, 34687, 65587, 2089951, 4091797, 8340613, 8161477, 10124833, 18927067, 37179433, 37393633, 25855567, 64346413, 107160373, 95150203, 159440893, 238973101, 257658061, 277743397, 322210813, 256268149, 349883707, 578403913, 814865497, 752724457, 704710543
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2019

Keywords

Comments

The terms are ordered according to the their lesser counterparts (A324255).
Analogous to A002046 as A019279 is analogous to A000396.

Examples

			(23, 37) are the first pair since sigma(sigma(23)) = sigma(sigma(37)) = 60 = 23 + 37.
		

Crossrefs

Cf. A000203, A000396, A002046, A019279, A045614 (unitary analog), A051027, A324255.

Programs

  • Mathematica
    seq={}; s[n_]:=DivisorSigma[1,DivisorSigma[1,n]]-n; Do[m=s[n];If[m>n && s[m]==n, AppendTo[seq, m]], {n,1,60000}]; seq
  • PARI
    f(n) = sigma(sigma(n)) - n;
    lista(nn) = {for (n=1, nn, my(fn = f(n)); if ((fn > n) && (f(fn) == n), print1(fn, ", ")););} \\ Michel Marcus, Feb 20 2019

A328120 Exponential superperfect numbers (or e-superperfect numbers): numbers m such that esigma(esigma(m)) = 2m, where esigma(m) is the sum of exponential divisors of m (A051377).

Original entry on oeis.org

9, 12, 45, 60, 63, 84, 99, 117, 132, 153, 156, 171, 204, 207, 228, 261, 270, 276, 279, 315, 333, 348, 369, 372, 387, 420, 423, 444, 477, 492, 495, 516, 531, 549, 564, 585, 603, 636, 639, 657, 660, 693, 708, 711, 732, 747, 765, 780, 801, 804, 819, 852, 855, 873
Offset: 1

Views

Author

Amiram Eldar, Oct 04 2019

Keywords

Comments

Hanumanthachari et al. proved that:
1) The only e-superperfect number of the form p^q with p and q primes is 9 = 3^2.
2) If p prime, m squarefree coprime to m with gcd(p+1, m) > 1 then p^2 * m is e-superperfect only if p = 2.
3) If k is squarefree coprime to esigma(m) then m*k is e-superperfect if and only if m is e-superperfect.

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 53.

Crossrefs

The exponential version of A019279.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; espQ[n_] := esigma[esigma[n]] == 2n; Select[Range[1000], espQ]
  • PARI
    esigma(n) = {my(f = factor(n)); prod(k = 1, #f~, sumdiv(f[k, 2], d, f[k, 1]^d));}
    isok(k) = esigma(esigma(k)) == 2*k; \\ Amiram Eldar, Jan 09 2025

Formula

9 is in the sequence since esigma(9) = 12 and esigma(12) = 18 = 2*9.

A329884 Nonunitary superperfect numbers: numbers k such that nusigma(nusigma(k)) = k, where nusigma(k) = sigma(k) - usigma(k) is the sum of nonunitary divisors of k (A048146).

Original entry on oeis.org

24, 48, 56, 112, 192, 248, 252, 328, 448, 496, 768, 1016, 1792, 1984, 2032, 3240, 6462, 7936, 8128, 11616, 11808, 17412, 20538, 32512, 49152, 65528, 114688, 131056, 507904, 524224, 786432, 1048568, 1835008, 2080768, 2096896, 2097136, 3145728, 4194296, 7340032
Offset: 1

Views

Author

Amiram Eldar, Nov 23 2019

Keywords

Comments

Analogous to superperfect numbers (A019279) as nonunitary perfect numbers (A064591) is analogous to perfect numbers (A000396).

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; Select[Range[10^6], nusigma[nusigma[#]] == # &]

A336613 Numbers m such that tau(sigma(m)) divides m, where tau(m) is the number of divisors function (A000005) and sigma(m) is the sum of divisors function (A000203).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 16, 24, 36, 48, 64, 72, 80, 81, 84, 100, 112, 120, 128, 140, 144, 156, 160, 162, 168, 192, 198, 200, 208, 210, 216, 240, 256, 270, 288, 300, 320, 324, 336, 357, 360, 368, 384, 390, 420, 432, 448, 464, 468, 480, 512, 560, 576, 592, 600, 624, 630
Offset: 1

Views

Author

Bernard Schott, Jul 29 2020

Keywords

Comments

Two subsets of terms:
1) If 2^p - 1 is a Mersenne prime (p is in A000043 and 2^p-1 is in A000668), then m = 2^(p-1) is a term that belongs to A019279: the even superperfect numbers (2, 4, 16, 64, 4096, ...). Proof: sigma(m) = 1+2+...+2^(p-1) = 2^p - 1 that is a Mersenne prime so tau(2^p-1) = 2 that divides m = 2^(p-1); indeed, m/tau(sigma(m)) = 2^(p-2).
2) If m = 2^(p-1) is a term as above, then 3*m is another term (see example) with 3*m/tau(sigma(3*m)) = 2^(p-2).

Examples

			48 = 2^4 * 3, so, sigma(48) = sigma(2^4) * sigma(3) = (2^5 - 1) * (1+3) = 31 * 4 = 124; then, tau(2^2 * 31) = tau(4) * tau(31) = 3 * 2 = 6, and  48/6 = 8 = 2^3, hence 48 is a term.
		

Crossrefs

Cf. A019279 (subsequence), A336612 (sigma(tau(m)) divides m).

Programs

  • Maple
    with(numtheory) filter:= m -> m/tau(sigma(m)) = floor(m/tau(sigma(m))) : select(filter, [$1..650]);
  • Mathematica
    Select[Range[630], Divisible[#, DivisorSigma[0, DivisorSigma[1, #]]] &] (* Amiram Eldar, Jul 30 2020 *)
  • PARI
    isok(m) = !(m % numdiv(sigma(m))); \\ Michel Marcus, Jul 30 2020
Previous Showing 51-60 of 88 results. Next