cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A019653 Decimal expansion of sqrt(Pi*e)/9.

Original entry on oeis.org

3, 2, 4, 6, 9, 8, 0, 4, 0, 5, 9, 1, 3, 6, 4, 2, 0, 7, 1, 7, 1, 2, 9, 1, 4, 5, 2, 9, 0, 0, 8, 5, 3, 5, 9, 0, 5, 9, 9, 7, 6, 7, 5, 0, 5, 8, 4, 9, 6, 1, 8, 5, 3, 9, 8, 9, 0, 8, 6, 0, 0, 0, 1, 2, 7, 4, 6, 6, 1, 7, 9, 6, 9, 2, 9, 2, 1, 7, 4, 3, 1, 6, 0, 4, 8, 8, 4, 0, 6, 3, 0, 8, 5, 2, 2, 8, 7, 6, 9
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A019645.

Programs

  • Magma
    C := ComplexField(); [Sqrt(Pi(C)*Exp(1))/9]; // G. C. Greubel, Nov 06 2017
  • Mathematica
    RealDigits[Sqrt[Pi E]/9,10,120][[1]] (* Harvey P. Dale, Apr 06 2013 *)
  • PARI
    sqrt(Pi*exp (1))/9 \\ G. C. Greubel, Jan 10 2017
    

A019655 Decimal expansion of sqrt(Pi*e)/11.

Original entry on oeis.org

2, 6, 5, 6, 6, 2, 0, 3, 3, 2, 1, 1, 1, 1, 6, 1, 6, 9, 5, 0, 3, 7, 8, 3, 9, 1, 6, 0, 0, 9, 7, 8, 9, 3, 0, 1, 3, 9, 9, 8, 0, 9, 7, 7, 7, 5, 1, 3, 3, 2, 4, 2, 5, 9, 9, 1, 0, 7, 0, 3, 6, 3, 7, 4, 0, 6, 5, 4, 1, 4, 7, 0, 2, 1, 4, 8, 1, 4, 2, 6, 2, 2, 2, 2, 1, 7, 7, 8, 6, 9, 7, 9, 7, 0, 0, 5, 3, 5, 6
Offset: 0

Keywords

Crossrefs

Cf. A019645.

Programs

  • Magma
    C := ComplexField(); [Sqrt(Pi(C)*Exp(1))/11]; // G. C. Greubel, Nov 06 2017
  • Mathematica
    RealDigits[Sqrt[Pi*E]/11, 10, 20][[1]] (* G. C. Greubel, Jan 10 2017 *)
  • PARI
    sqrt(Pi*exp (1))/11 \\ G. C. Greubel, Jan 10 2017
    

A019656 Decimal expansion of sqrt(Pi*e)/12.

Original entry on oeis.org

2, 4, 3, 5, 2, 3, 5, 3, 0, 4, 4, 3, 5, 2, 3, 1, 5, 5, 3, 7, 8, 4, 6, 8, 5, 8, 9, 6, 7, 5, 6, 4, 0, 1, 9, 2, 9, 4, 9, 8, 2, 5, 6, 2, 9, 3, 8, 7, 2, 1, 3, 9, 0, 4, 9, 1, 8, 1, 4, 5, 0, 0, 0, 9, 5, 5, 9, 9, 6, 3, 4, 7, 6, 9, 6, 9, 1, 3, 0, 7, 3, 7, 0, 3, 6, 6, 3, 0, 4, 7, 3, 1, 3, 9, 2, 1, 5, 7, 7
Offset: 0

Keywords

Crossrefs

Cf. A019645.

Programs

  • Magma
    C := ComplexField(); [Sqrt(Pi(C)*Exp(1))/12]; // G. C. Greubel, Nov 06 2017
  • Mathematica
    RealDigits[Sqrt[Pi*E]/12, 10, 20][[1]] (* G. C. Greubel, Jan 10 2017 *)
  • PARI
    sqrt(Pi*exp (1))/12 \\ G. C. Greubel, Jan 10 2017
    

A019657 Decimal expansion of sqrt(Pi*e)/13.

Original entry on oeis.org

2, 2, 4, 7, 9, 0, 9, 5, 1, 1, 7, 8, 6, 3, 6, 7, 5, 8, 8, 1, 0, 8, 9, 4, 0, 8, 2, 7, 7, 7, 5, 1, 4, 0, 2, 4, 2, 6, 1, 3, 7, 7, 5, 0, 4, 0, 4, 9, 7, 3, 5, 9, 1, 2, 2, 3, 2, 1, 3, 3, 8, 4, 7, 0, 3, 6, 3, 0, 4, 3, 2, 0, 9, 5, 0, 9, 9, 6, 6, 8, 3, 4, 1, 8, 7, 6, 5, 8, 8, 9, 8, 2, 8, 2, 3, 5, 3, 0, 1
Offset: 0

Keywords

Crossrefs

Cf. A019645.

Programs

  • Magma
    C := ComplexField(); [Sqrt(Pi(C)*Exp(1))/13]; // G. C. Greubel, Nov 06 2017
  • Mathematica
    RealDigits[Sqrt[Pi*E]/13, 10, 20][[1]] (* G. C. Greubel, Jan 10 2017 *)
  • PARI
    sqrt(Pi*exp (1))/13 \\ G. C. Greubel, Jan 10 2017
    

A019658 Decimal expansion of sqrt(Pi*e)/14.

Original entry on oeis.org

2, 0, 8, 7, 3, 4, 4, 5, 4, 6, 6, 5, 8, 7, 6, 9, 9, 0, 3, 2, 4, 4, 0, 1, 6, 4, 8, 2, 9, 3, 4, 0, 5, 8, 7, 9, 6, 7, 1, 2, 7, 9, 1, 1, 0, 9, 0, 3, 3, 2, 6, 2, 0, 4, 2, 1, 5, 5, 5, 2, 8, 5, 7, 9, 6, 2, 2, 8, 2, 5, 8, 3, 7, 4, 0, 2, 1, 1, 2, 0, 6, 0, 3, 1, 7, 1, 1, 1, 8, 3, 4, 1, 1, 9, 3, 2, 7, 8, 0
Offset: 0

Keywords

Crossrefs

Cf. A019645.

Programs

  • Magma
    C := ComplexField(); [Sqrt(Pi(C)*Exp(1))/14]; // G. C. Greubel, Nov 06 2017
  • Mathematica
    RealDigits[Sqrt[Pi*E]/14, 10, 20][[1]] (* G. C. Greubel, Jan 10 2017 *)
  • PARI
    sqrt(Pi*exp (1))/14 \\ G. C. Greubel, Jan 10 2017
    

A019660 Decimal expansion of sqrt(Pi*e)/16.

Original entry on oeis.org

1, 8, 2, 6, 4, 2, 6, 4, 7, 8, 3, 2, 6, 4, 2, 3, 6, 6, 5, 3, 3, 8, 5, 1, 4, 4, 2, 2, 5, 6, 7, 3, 0, 1, 4, 4, 7, 1, 2, 3, 6, 9, 2, 2, 2, 0, 4, 0, 4, 1, 0, 4, 2, 8, 6, 8, 8, 6, 0, 8, 7, 5, 0, 7, 1, 6, 9, 9, 7, 2, 6, 0, 7, 7, 2, 6, 8, 4, 8, 0, 5, 2, 7, 7, 7, 4, 7, 2, 8, 5, 4, 8, 5, 4, 4, 1, 1, 8, 2
Offset: 0

Keywords

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Sqrt[Pi*E]/16, 10, 100]] (* Paolo Xausa, May 02 2024 *)

A074955 Continued fraction for arithmetic mean of Pi and e.

Original entry on oeis.org

2, 1, 13, 3, 1, 1, 1, 42, 1, 2, 1, 5, 5, 1, 1, 1, 1, 4, 2, 1, 2, 4, 8, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 18, 1, 1, 1, 12, 3, 1, 8, 1, 1, 2, 3, 1, 2, 5, 2, 2, 2, 1, 2, 6, 2, 4, 4, 3, 1, 1, 19, 730, 1, 30, 1, 51, 2, 1, 2, 6, 1, 1, 1, 4, 7, 20, 96, 38, 5, 3, 3, 10, 1, 1, 3, 3, 2, 2, 3, 74, 1, 1, 941, 1, 4, 3
Offset: 0

Author

Zak Seidov, Oct 05 2002

Keywords

Crossrefs

Cf. A019645 (decimal expansion).

Programs

Extensions

Offset changed by Andrew Howroyd, Aug 07 2024

A342209 Decimal expansion of logarithmic mean of Pi and e.

Original entry on oeis.org

2, 9, 2, 4, 8, 3, 3, 5, 4, 5, 2, 3, 7, 6, 9, 4, 8, 9, 9, 2, 7, 3, 3, 5, 9, 2, 2, 7, 6, 6, 1, 3, 5, 9, 4, 8, 2, 7, 8, 0, 3, 3, 8, 5, 3, 7, 6, 0, 2, 7, 4, 6, 8, 2, 2, 5, 4, 8, 2, 5, 9, 4, 8, 4, 9, 2, 8, 3, 2, 2, 9, 4, 5, 0, 4, 0, 1, 5, 8, 1, 6, 5, 8, 8, 5, 0, 3, 6, 9, 3, 5, 7, 8, 9, 5, 7, 6, 2, 9, 3, 9, 7, 4, 5, 0, 4, 0, 4
Offset: 1

Author

Gleb Koloskov, Mar 05 2021

Keywords

Comments

The logarithmic mean of Pi and e lies between the arithmetic and geometric means of Pi and e.

Examples

			2.9248335452376948992733592...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Pi - E)/(Log[Pi] - 1), 10, 100][[1]] (* Amiram Eldar, Mar 06 2021 *)
  • PARI
    (Pi-exp(1))/(log(Pi)-1)

Formula

Equals (Pi-e)/(log(Pi)-1).
Previous Showing 11-18 of 18 results.