cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 110 results. Next

A175288 Decimal expansion of the minimal positive constant x satisfying (cos(x))^2 = sin(x).

Original entry on oeis.org

6, 6, 6, 2, 3, 9, 4, 3, 2, 4, 9, 2, 5, 1, 5, 2, 5, 5, 1, 0, 4, 0, 0, 4, 8, 9, 5, 9, 7, 7, 7, 9, 2, 7, 2, 0, 6, 6, 7, 4, 9, 0, 1, 3, 8, 7, 2, 5, 9, 4, 7, 8, 4, 2, 8, 3, 1, 4, 7, 3, 8, 4, 2, 8, 0, 3, 9, 7, 8, 9, 8, 9, 3, 7, 9, 0, 5, 9, 2, 8, 1, 7, 0, 7, 9, 0, 6, 8, 3, 1, 1, 6, 9, 5, 8, 1, 1, 3, 5, 2, 5, 9, 7, 7, 6
Offset: 0

Views

Author

R. J. Mathar, Mar 23 2010, Mar 29 2010

Keywords

Comments

This is the angle (in radians) at which the modified loop curve x^4=x^2*y-y^2 returns to the origin. Writing the curve in (r,phi) circular coordinates, r = sin(phi) * (cos^2(phi)-sin(phi)) /cos^4(phi), the two values of r=0 are phi=0 and the value of phi defined here. The equivalent angle of the Bow curve is Pi/4.
Also the minimum positive solution to tan(x) = cos(x). - Franklin T. Adams-Watters, Jun 17 2014

Examples

			x = 0.66623943.. = 38.1727076... degrees.
		

Crossrefs

Programs

  • Mathematica
    r = 1/GoldenRatio;
    N[ArcSin[r], 100]
    RealDigits[%]  (* A175288 *)
    RealDigits[x/.FindRoot[Cos[x]^2==Sin[x],{x,.6}, WorkingPrecision->120]] [[1]] (* Harvey P. Dale, Nov 08 2011 *)
    RealDigits[ ArcCos[ Sqrt[ (Sqrt[5] - 1)/2]], 10, 105] // First (* Jean-François Alcover, Feb 19 2013 *)

Formula

x = arcsin(A094214). cos(x)^2 = sin(x) = 0.618033988... = A094214.
From Amiram Eldar, Feb 07 2022: (Start)
Equals Pi/2 - A195692.
Equals arccos(1/sqrt(phi)).
Equals arctan(1/sqrt(phi)) = arccot(sqrt(phi)). (End)
Root of the equation cos(x) = tan(x). - Vaclav Kotesovec, Mar 06 2022

Extensions

Disambiguated the curve here from the Mathworld bow curve - R. J. Mathar, Mar 29 2010

A197762 Decimal expansion of sqrt(1/phi), where phi = (1 + sqrt(5))/2 is the golden ratio.

Original entry on oeis.org

7, 8, 6, 1, 5, 1, 3, 7, 7, 7, 5, 7, 4, 2, 3, 2, 8, 6, 0, 6, 9, 5, 5, 8, 5, 8, 5, 8, 4, 2, 9, 5, 8, 9, 2, 9, 5, 2, 3, 1, 2, 2, 0, 5, 7, 8, 3, 7, 7, 2, 3, 2, 3, 7, 6, 6, 4, 9, 0, 1, 9, 7, 0, 1, 0, 1, 1, 8, 2, 0, 4, 7, 6, 2, 2, 3, 1, 0, 9, 1, 3, 7, 1, 1, 9, 1, 2, 8, 8, 9, 1, 5, 8, 5, 0, 8, 1, 3, 5
Offset: 0

Views

Author

Clark Kimberling, Oct 19 2011

Keywords

Comments

The hyperbolas y^2-x^2=1 and xy=1 meet at (1/c,c) and (-1/c,c), where c=sqrt(golden ratio); see the Mathematica program for a graph; see A189339 for hyperbolas meeting at (c,1/c) and (-c,-1/c).
This number is the eccentricity of an ellipse inscribed in a golden rectangle. - Jean-François Alcover, Sep 03 2015
c/sqrt(-1) is the limit of Pi(a;n)/2 := a^n * sqrt(a - f(a;n)) with f(a;0) = 0, and f(a;n) = sqrt(a + f(a;n-1)) for n >= 1, if one takes a = 1. For a=2 this gives Viète's formula for Pi/2 (see A019669). - Wolfdieter Lang, Jul 06 2018

Examples

			0.786151377757423286069558585842958929523122057...
		

Crossrefs

Programs

  • Mathematica
    N[1/Sqrt[GoldenRatio], 110]
    RealDigits[%]
    FindRoot[x*Sqrt[1 + x^2] == 1, {x, 1.2, 1.3}, WorkingPrecision -> 110]
    Plot[{Sqrt[1 + x^2], 1/x}, {x, 0, 3}]
  • PARI
    sqrt(2/(1+sqrt(5))) \\ Michel Marcus, Sep 03 2015
    
  • PARI
    my(c=1/quadgen(5)); a_vector(len) = digits(sqrtint(floor(c*100^len))); \\ Kevin Ryde, Jul 12 2025

Formula

Equals sqrt(1/phi) = sqrt(phi-1), with phi = A001622.
From Amiram Eldar, Feb 07 2022: (Start)
Equals 1/A139339.
Equals tan(arcsin(1/phi)).
Equals sin(arccos(1/phi)).
Equals cos(arcsin(1/phi)).
Equals cot(arccos(1/phi)). (End)

A232247 Decimal expansion of the arctan of 2/Pi.

Original entry on oeis.org

5, 6, 6, 9, 1, 1, 5, 0, 4, 9, 4, 1, 0, 0, 9, 4, 0, 5, 0, 8, 2, 8, 9, 7, 7, 4, 6, 7, 2, 2, 6, 1, 9, 1, 5, 3, 8, 0, 6, 4, 8, 0, 2, 3, 9, 0, 9, 2, 6, 8, 2, 3, 3, 5, 7, 5, 7, 7, 5, 9, 4, 7, 2, 0, 4, 5, 8, 9, 3, 0, 1, 1, 7, 5, 9, 7, 0, 9, 1, 8, 2, 7, 5, 3, 1, 0
Offset: 0

Views

Author

Bruno Berselli, Nov 21 2013

Keywords

Examples

			0.56691150494100940508289774672261915380648023909268233575775947204589...
		

Crossrefs

Programs

  • Maple
    evalf(arctan(2/Pi));
  • Mathematica
    RealDigits[ArcTan[2/Pi], 10, 90][[1]]
  • PARI
    atan(2/Pi) \\ Charles R Greathouse IV, Mar 24 2021

Formula

Equals A019669 - A232182.
Equals Sum_{k>=0} (-1)^k*(2/Pi)^(1+2*k)/(1+2*k).

A257817 Decimal expansion of the real part of li(i), i being the imaginary unit.

Original entry on oeis.org

4, 7, 2, 0, 0, 0, 6, 5, 1, 4, 3, 9, 5, 6, 8, 6, 5, 0, 7, 7, 7, 6, 0, 6, 1, 0, 7, 6, 1, 4, 1, 2, 7, 8, 3, 6, 5, 0, 7, 3, 3, 0, 5, 4, 3, 0, 1, 8, 3, 6, 1, 8, 8, 1, 8, 6, 8, 3, 8, 3, 7, 1, 8, 9, 9, 3, 8, 5, 8, 0, 3, 7, 7, 6, 9, 5, 3, 1, 3, 0, 8, 5, 0, 9, 3, 3, 7, 9, 7, 0, 7, 6, 0, 4, 9, 2, 9, 2, 1, 2, 0, 0, 1, 5, 3
Offset: 0

Views

Author

Stanislav Sykora, May 10 2015

Keywords

Comments

li(x) is the logarithmic integral function, extended to the whole complex plane. The corresponding imaginary part is in A257818.

Examples

			0.47200065143956865077760610761412783650733054301836188186838371...
		

Crossrefs

Programs

  • Maple
    evalf(Re(Li(I)),120); # Vaclav Kotesovec, May 10 2015
  • Mathematica
    RealDigits[Re[LogIntegral[I]], 10, 120][[1]] (* Vaclav Kotesovec, May 10 2015 *)
  • PARI
    li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex
      if(imag(c)<0, return(-Pi*I-eint1(-log(c))),
      return(+Pi*I-eint1(-log(c)))); }
      a=real(li(I))

Formula

Equals gamma + log(Pi/2) + Sum_{k>=1}((-1)^k*(Pi/2)^(2*k)/(2*k)!/(2*k)).
Equals Ci(Pi/2), the maximum value of the cosine integral along the real axis. - Stanislav Sykora, Nov 12 2016

A257818 Decimal expansion of the imaginary part of li(i), i being the imaginary unit.

Original entry on oeis.org

2, 9, 4, 1, 5, 5, 8, 4, 9, 4, 9, 4, 9, 3, 8, 5, 0, 9, 9, 3, 0, 0, 9, 9, 9, 9, 8, 0, 0, 2, 1, 3, 2, 6, 7, 7, 2, 0, 8, 9, 4, 4, 6, 0, 3, 5, 2, 5, 1, 9, 2, 1, 5, 9, 0, 1, 2, 2, 7, 0, 4, 4, 3, 9, 2, 8, 3, 9, 4, 3, 5, 6, 4, 2, 1, 1, 0, 6, 0, 7, 2, 5, 0, 3, 4, 0, 8, 2, 6, 5, 3, 4, 8, 4, 9, 5, 9, 0, 9, 4, 9, 3, 4, 6, 7
Offset: 1

Views

Author

Stanislav Sykora, May 10 2015

Keywords

Comments

li(x) is the logarithmic integral function, extended to the whole complex plane. The corresponding real part is in A257817.

Examples

			2.941558494949385099300999980021326772089446035251921590122704439...
		

Crossrefs

Programs

  • Maple
    evalf(Im(Li(I)), 120); # Vaclav Kotesovec, May 10 2015
    evalf(Pi/2*(1+Sum(((-1)^k*(Pi/2)^(2*k)/(2*k+1)!/(2*k+1)), k=0..infinity)), 120); # Vaclav Kotesovec, May 10 2015
  • Mathematica
    RealDigits[Im[LogIntegral[I]], 10, 120][[1]] (* Vaclav Kotesovec, May 10 2015 *)
  • PARI
    li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex
      if(imag(c)<0, return(-Pi*I-eint1(-log(c))),
      return(+Pi*I-eint1(-log(c))));}
      a=imag(li(I))

Formula

Equals (Pi/2)*(1+Sum_{k>=0}((-1)^k*(Pi/2)^(2*k)/(2*k+1)!/(2*k+1))).

A352125 Decimal expansion of Pi*sqrt(2)*sqrt(2 + sqrt(2))/8.

Original entry on oeis.org

1, 0, 2, 6, 1, 7, 2, 1, 5, 2, 9, 7, 7, 0, 3, 0, 8, 8, 8, 8, 7, 1, 4, 6, 7, 7, 8, 0, 8, 7, 2, 8, 3, 1, 9, 7, 4, 9, 7, 9, 6, 2, 1, 5, 8, 8, 1, 9, 5, 8, 1, 6, 1, 1, 9, 6, 2, 2, 5, 4, 9, 6, 4, 6, 6, 6, 8, 6, 8, 5, 0, 3, 1, 7, 5, 5, 6, 3, 2, 7, 1, 3, 4, 1, 8, 9, 1, 5, 3, 3, 6, 5, 6, 2, 0
Offset: 1

Views

Author

Stefano Spezia, Mar 05 2022

Keywords

Examples

			1.02617215297703088887146778087283197497962...
		

References

  • Jean-François Pabion, Éléments d'Analyse Complexe, licence de Mathématiques, page 111, Ellipses, 1995.

Crossrefs

Integral_{x=0..oo} 1/(1+x^m) dx: A019669 (m=2), A248897 (m=3), A093954 (m=4), A352324 (m=5), A019670 (m=6), this sequence (m=8), A094888 (m=10).

Programs

  • Mathematica
    First[RealDigits[N[Pi*Sqrt[2]Sqrt[2+Sqrt[2]]/8,95]]]
  • PARI
    Pi*sqrt(4 + 2*sqrt(2))/8 \\ Michel Marcus, Mar 07 2022

Formula

Equals Integral_{x=0..oo} 1/(1 + x^8) dx.
Equals Pi*csc(Pi/8)/8.
Equals 1/Product_{k>=1} (1 - 1/(8*k)^2). - Amiram Eldar, Mar 12 2022
Equals Product_{k>=2} (1 + (-1)^k/A047522(k)). - Amiram Eldar, Nov 22 2024

A378354 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a (small) triakis octahedron.

Original entry on oeis.org

2, 5, 7, 1, 7, 4, 4, 4, 0, 0, 3, 4, 5, 6, 6, 8, 4, 6, 7, 9, 1, 2, 8, 5, 4, 0, 5, 0, 9, 2, 8, 0, 6, 3, 7, 9, 3, 5, 5, 1, 1, 5, 6, 9, 4, 1, 1, 1, 3, 8, 5, 9, 7, 4, 5, 3, 2, 5, 4, 4, 5, 4, 2, 6, 8, 0, 3, 6, 3, 5, 1, 6, 5, 6, 1, 5, 2, 6, 3, 5, 8, 7, 9, 1, 4, 6, 0, 6, 6, 5
Offset: 1

Views

Author

Paolo Xausa, Nov 24 2024

Keywords

Comments

The (small) triakis octahedron is the dual polyhedron of the truncated cube.

Examples

			2.57174440034566846791285405092806379355115694111...
		

Crossrefs

Cf. A378351 (surface area), A378352 (volume), A378353 (inradius), A201488 (midradius).
Cf. A019669 and A195698 (dihedral angles of a truncated cube).
Cf. A377342.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-(3 + 8*Sqrt[2])/17], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["TriakisOctahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-(3 + 8*sqrt(2))/17) = arccos(-(3 + A377342)/17).

A195692 Decimal expansion of arccos(1/phi), where phi = (1+sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

9, 0, 4, 5, 5, 6, 8, 9, 4, 3, 0, 2, 3, 8, 1, 3, 6, 4, 1, 2, 7, 3, 1, 6, 7, 9, 5, 6, 6, 1, 9, 5, 8, 7, 2, 1, 4, 3, 1, 0, 9, 4, 5, 6, 0, 9, 6, 1, 6, 0, 5, 0, 6, 7, 6, 5, 5, 9, 9, 8, 4, 5, 3, 3, 4, 9, 9, 2, 9, 2, 1, 3, 7, 6, 4, 0, 4, 5, 2, 1, 7, 6, 0, 6, 1, 1, 0, 5, 8, 1, 5, 0, 1, 4, 7, 7, 3, 9, 8, 7, 3, 1, 2, 9, 7
Offset: 0

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

Every cyclic quadrilateral all of whose angles are greater than arccos((sqrt(5)-1)/2) admits a 3 × 1 grid dissection into three cyclic quadrilaterals [Thm. 2.3 in Choi et al. p. 2]. - Michel Marcus, Aug 13 2019
The base angle of the isosceles triangle of smallest perimeter which circumscribes a semicircle (DeTemple, 1992). - Amiram Eldar, Jan 22 2022
Smallest positive root of the equation sin(x) = cot(x). - Wolfe Padawer, Apr 11 2023

Examples

			arccos(1/phi) = 0.904556894302381364127316795661958721...
cos(0.904556894302381364127316795661958721...) = 1/(golden ratio) = 0.618...
sec(0.904556894302381364127316795661958721...) = (golden ratio) = 1.618...
		

Crossrefs

Programs

  • Mathematica
    r = 1/GoldenRatio;
    N[ArcCos[r], 100]
    RealDigits[%]
  • PARI
    acos(2/(sqrt(5)+1)) \\ Charles R Greathouse IV, Nov 21 2024

Formula

From Amiram Eldar, Feb 07 2022: (Start)
Equals Pi/2 - A175288.
Equals arcsin(1/sqrt(phi)).
Equals arctan(sqrt(phi)). (End)

Extensions

Terms replaced with intended terms by Rick L. Shepherd, Jan 30 2013

A228721 Decimal expansion of 7*Pi.

Original entry on oeis.org

2, 1, 9, 9, 1, 1, 4, 8, 5, 7, 5, 1, 2, 8, 5, 5, 2, 6, 6, 9, 2, 3, 8, 5, 0, 3, 6, 8, 2, 9, 5, 6, 5, 2, 0, 1, 8, 9, 3, 8, 0, 1, 8, 5, 7, 9, 5, 6, 2, 5, 7, 4, 0, 7, 4, 6, 8, 2, 4, 6, 1, 2, 1, 4, 6, 1, 5, 4, 7, 1, 4, 8, 4, 4, 0, 0, 3, 4, 6, 2, 9, 9, 0, 3, 9, 6, 2, 4, 3, 7, 7, 7, 3, 9, 4, 8, 1, 9, 4, 7, 5, 8, 7, 5
Offset: 2

Views

Author

Omar E. Pol, Oct 03 2013

Keywords

Comments

7*Pi is also the surface area of a sphere whose diameter equals the square root of 7. More generally x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 22 2013

Examples

			21.99114857512855266923850368295652018938...
		

Crossrefs

Cf. A000796, A019692, A122952, A019694, A019669, A228719 (Pi through 6*Pi).

Programs

A232273 Decimal expansion of the arctan of Pi.

Original entry on oeis.org

1, 2, 6, 2, 6, 2, 7, 2, 5, 5, 6, 7, 8, 9, 1, 1, 6, 8, 3, 4, 4, 4, 3, 2, 2, 0, 8, 3, 6, 0, 5, 6, 9, 8, 3, 4, 3, 5, 0, 8, 9, 4, 7, 6, 7, 0, 4, 2, 4, 3, 8, 3, 5, 9, 6, 9, 7, 3, 8, 0, 9, 9, 5, 2, 2, 5, 2, 2, 2, 5, 3, 0, 2, 6, 9, 1, 7, 3, 3, 9, 6, 5, 3, 4, 5
Offset: 1

Views

Author

Bruno Berselli, Nov 22 2013

Keywords

Examples

			1.2626272556789116834443220836056983435089476704243835969738099522522...
		

Crossrefs

Programs

Formula

Equals A019669 - A232272.
Previous Showing 41-50 of 110 results. Next