cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A019893 Decimal expansion of sine of 84 degrees.

Original entry on oeis.org

9, 9, 4, 5, 2, 1, 8, 9, 5, 3, 6, 8, 2, 7, 3, 3, 3, 6, 9, 2, 2, 6, 9, 1, 9, 4, 4, 9, 8, 0, 5, 7, 0, 3, 8, 1, 5, 2, 0, 7, 9, 2, 0, 8, 8, 7, 0, 9, 3, 1, 9, 4, 2, 7, 3, 6, 6, 5, 5, 8, 8, 3, 3, 5, 7, 4, 3, 1, 6, 2, 5, 0, 6, 8, 6, 8, 9, 8, 3, 6, 2, 5, 7, 9, 3, 0, 6, 2, 2, 0, 3, 8, 3, 3, 6, 0, 9, 2, 9
Offset: 0

Views

Author

Keywords

Comments

Equals sin(7*Pi/15). - Wesley Ivan Hurt, Sep 01 2014
An algebraic number of degree 8 and denominator 2. - Charles R Greathouse IV, Aug 27 2017

Examples

			0.9945218953682733369226919449805703815207920887093194273665588...
		

Programs

Formula

Equals cos(Pi/30) = 2F1(11/20,9/20;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Equals 2*A019851*A019857. - R. J. Mathar, Jan 17 2021
Root of 256*x^8 -448*x^6 +224*x^4 -32*x^2 +1 = 0. - R. J. Mathar, Aug 29 2025
4*this^3 -3*this = A019881. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/20,1/20;1/2;3/4). - R. J. Mathar, Aug 31 2025

A179593 Decimal expansion of the volume of pentagonal rotunda with edge length 1.

Original entry on oeis.org

6, 9, 1, 7, 7, 6, 2, 9, 6, 8, 1, 2, 4, 7, 0, 2, 0, 6, 9, 9, 1, 2, 9, 9, 6, 0, 3, 0, 7, 0, 2, 6, 4, 1, 3, 3, 3, 5, 4, 0, 8, 7, 6, 0, 0, 9, 4, 4, 9, 6, 6, 1, 4, 4, 2, 7, 1, 7, 1, 0, 4, 4, 3, 0, 9, 9, 8, 2, 3, 7, 9, 7, 7, 9, 8, 6, 8, 9, 0, 2, 7, 4, 1, 7, 0, 4, 2, 0, 4, 1, 1, 8, 6, 9, 9, 4, 1, 5, 5, 6, 2, 0, 6, 8, 0
Offset: 1

Views

Author

Keywords

Comments

Pentagonal rotunda: 20 vertices, 35 edges, and 17 faces.

Examples

			6.91776296812470206991299603070264133354087600944966144271710443099823...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(45+17*Sqrt[5])/12,200]]

Formula

Digits of (45+17*sqrt(5))/12.

A232737 Decimal expansion of the real part of I^(1/8), or cos(Pi/16).

Original entry on oeis.org

9, 8, 0, 7, 8, 5, 2, 8, 0, 4, 0, 3, 2, 3, 0, 4, 4, 9, 1, 2, 6, 1, 8, 2, 2, 3, 6, 1, 3, 4, 2, 3, 9, 0, 3, 6, 9, 7, 3, 9, 3, 3, 7, 3, 0, 8, 9, 3, 3, 3, 6, 0, 9, 5, 0, 0, 2, 9, 1, 6, 0, 8, 8, 5, 4, 5, 3, 0, 6, 5, 1, 3, 5, 4, 9, 6, 0, 5, 0, 6, 3, 9, 1, 5, 0, 6, 4, 9, 8, 5, 8, 5, 3, 3, 0, 0, 7, 6, 3, 2, 5, 9, 8, 9, 4
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding imaginary part is in A232738.

Examples

			0.9807852804032304491261822361342390369739337308933360950029160885453...
		

Crossrefs

Cf. A232738 (imaginary part), A010503 (real(I^(1/2))), A010527 (real(I^(1/3))), A144981 (real(I^(1/4))), A019881 (real(I^(1/5))), A019884 (real(I^(1/6))), A232735 (real(I^(1/7))), A019889 (real(I^(1/9))), A019890 (real(I^(1/10))).

Programs

Formula

Equals (1/2) * sqrt(2+sqrt(2+sqrt(2))). - Seiichi Manyama, Apr 04 2021
Root of 128*x^8 -256*x^6 +160*x^4 -32*x^2 +1 = 0. - R. J. Mathar, Aug 29 2025
2*this^2 -1 = A144981. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/8,1/8;1/2;1/2). - R. J. Mathar, Aug 31 2025

A019836 Decimal expansion of sine of 27 degrees.

Original entry on oeis.org

4, 5, 3, 9, 9, 0, 4, 9, 9, 7, 3, 9, 5, 4, 6, 7, 9, 1, 5, 6, 0, 4, 0, 8, 3, 6, 6, 3, 5, 7, 8, 7, 1, 1, 9, 8, 9, 8, 3, 0, 4, 7, 7, 0, 3, 0, 4, 9, 0, 2, 1, 5, 5, 6, 9, 8, 5, 3, 1, 6, 0, 0, 5, 8, 2, 2, 0, 2, 6, 7, 8, 4, 1, 3, 1, 8, 5, 2, 4, 2, 8, 7, 5, 4, 4, 7, 3, 4, 3, 9, 2, 2, 1, 9, 4, 6, 7, 9, 7
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 8 and denominator 2. - Charles R Greathouse IV, Aug 27 2017

Programs

Formula

Equals cos(7*Pi/20). 2*this^2-1 = -A019845. - R. J. Mathar, Aug 29 2025

A138370 Count of post-period decimal digits up to which the rounded n-th convergent to 4*sin(2*Pi/5) agrees with the exact value.

Original entry on oeis.org

2, 3, 4, 5, 5, 6, 6, 8, 9, 10, 11, 12, 12, 13, 14, 15, 15, 17, 18, 17, 19, 21, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 33, 34, 35, 36, 37, 38, 38, 40, 41, 42, 41, 42, 43, 45, 44, 46, 44, 47, 49, 49, 50, 52, 53, 54, 55, 57, 59, 60, 61, 63, 62, 65, 67, 67, 68, 70, 69, 70, 70, 71
Offset: 2

Views

Author

Artur Jasinski, Mar 17 2008

Keywords

Comments

The computation of A138369 is repeated for 4*sin(2*Pi/5) = sqrt(2)*sqrt(5+sqrt(5))
= 3.80422606518061.. = 4*A019881.
The convergents are 19/5 (n=2), 175/46 (n=3), 544/143 (n=4), 719/189 (n=5), 2701/710 (n=6) etc.

Examples

			a(6)=5 because 2701/710 = 3.80422535... agrees with 3.8042260651.. if both are rounded up to 5 decimal digits (3.80423 = 3.80423), but disagrees at the level of rounding to 6 decimal digits (3.804226 <> 3.804225) or more.
		

Crossrefs

Extensions

Definition and values replaced as defined via continued fractions - R. J. Mathar, Oct 01 2009

A179592 Decimal expansion of the circumradius of pentagonal cupola with edge length 1.

Original entry on oeis.org

2, 2, 3, 2, 9, 5, 0, 5, 0, 9, 4, 1, 5, 6, 9, 0, 0, 4, 9, 5, 0, 0, 4, 1, 5, 3, 8, 3, 2, 4, 9, 6, 8, 2, 7, 7, 2, 9, 3, 4, 0, 8, 0, 7, 3, 0, 5, 7, 9, 1, 8, 1, 6, 4, 7, 4, 5, 7, 4, 4, 1, 2, 6, 0, 8, 2, 5, 5, 6, 5, 8, 9, 4, 9, 0, 1, 6, 4, 3, 8, 2, 8, 9, 6, 2, 4, 5, 1, 9, 5, 0, 6, 0, 9, 2, 7, 3, 7, 3, 8, 5, 6, 4, 7, 4
Offset: 1

Views

Author

Keywords

Comments

Pentagonal cupola: 15 vertices, 25 edges, and 12 faces.

Examples

			2.232950509415690049500415383249682772934080730579181647457441260...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[11+4*Sqrt[5]]/2,200]]

Formula

Digits of sqrt(11+4*sqrt(5))/2.

A165954 Decimal expansion of sqrt(10 + 2*sqrt(5))/(2*Pi).

Original entry on oeis.org

6, 0, 5, 4, 6, 1, 3, 8, 2, 9, 1, 2, 5, 2, 5, 5, 8, 3, 3, 8, 6, 2, 6, 5, 2, 0, 5, 1, 2, 8, 0, 4, 4, 4, 9, 0, 3, 0, 0, 8, 4, 5, 4, 0, 8, 8, 0, 1, 4, 2, 8, 8, 9, 3, 3, 2, 0, 0, 9, 3, 5, 0, 0, 0, 8, 3, 8, 2, 9, 5, 6, 8, 3, 8, 2, 0, 7, 2, 7, 2, 7, 8, 5, 3, 6, 2, 4, 2, 6, 2, 5, 9, 6, 8, 8, 1, 3, 0, 5, 1, 9, 3, 2, 4, 1
Offset: 0

Views

Author

Rick L. Shepherd, Oct 04 2009

Keywords

Comments

The ratio of the volume of a regular icosahedron to the volume of the circumscribed sphere (with circumradius a*sqrt(10 + 2*sqrt(5))/4 = a*A019881, where a is the icosahedron's edge length; see MathWorld link). For similar ratios for other Platonic solids, see A165922, A049541, A165952, and A165953. A063723 shows the order of these by size.

Examples

			0.6054613829125255833862652051280444903008454088014288933200935000838295683...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[10+2Sqrt[5]]/(2Pi),10,120][[1]] (* Harvey P. Dale, Aug 27 2013 *)
  • PARI
    sqrt(10+2*sqrt(5))/(2*Pi)

Formula

sqrt(10 + 2*sqrt(5))/(2*Pi) = sqrt(10 + 2*A002163)/(2*A000796) = 2*sin(2*Pi/5)/Pi = 2*sin(A019694)/A000796 = 2*sin(72 deg)/Pi = 2*A019881/A000796 = 2*A019881*A049541 = (2/Pi)*sin(72 deg) = A060294*A019881.

A340721 Decimal expansion of Gamma(3/5).

Original entry on oeis.org

1, 4, 8, 9, 1, 9, 2, 2, 4, 8, 8, 1, 2, 8, 1, 7, 1, 0, 2, 3, 9, 4, 3, 3, 3, 3, 8, 8, 3, 2, 1, 3, 4, 2, 2, 8, 1, 3, 2, 0, 5, 9, 9, 0, 3, 8, 7, 5, 9, 9, 2, 4, 7, 3, 5, 3, 3, 8, 6, 7, 9, 5, 6, 4, 0, 4, 5, 0, 8, 0, 1, 6, 3, 1, 2, 1, 9, 3, 4, 9, 3, 8, 2
Offset: 1

Views

Author

R. J. Mathar, Jan 17 2021

Keywords

Examples

			1.489192248812817102..
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(3/5),120) ;
  • Mathematica
    RealDigits[Gamma[3/5], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)

Formula

this * A246745 = Pi/A019881. [DLMF (5.5.3)]
this * A256191 *2^(7/10)/sqrt(2*Pi) = 2*A175380 [DLMF (5.5.5)]

A019830 Decimal expansion of sine of 21 degrees.

Original entry on oeis.org

3, 5, 8, 3, 6, 7, 9, 4, 9, 5, 4, 5, 3, 0, 0, 2, 7, 3, 4, 8, 4, 1, 3, 7, 7, 8, 9, 4, 1, 3, 4, 6, 6, 8, 3, 4, 1, 9, 1, 5, 4, 4, 4, 4, 9, 4, 6, 0, 0, 1, 3, 7, 9, 5, 4, 6, 3, 5, 7, 6, 7, 7, 5, 8, 5, 7, 3, 1, 9, 9, 2, 5, 9, 8, 2, 4, 9, 9, 0, 9, 8, 9, 8, 7, 3, 1, 6, 0, 9, 1, 3, 9, 2, 9, 8, 6, 7, 8, 9
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

A019907 Decimal expansion of tangent of 9 degrees.

Original entry on oeis.org

1, 5, 8, 3, 8, 4, 4, 4, 0, 3, 2, 4, 5, 3, 6, 2, 9, 3, 8, 3, 8, 8, 8, 3, 0, 9, 2, 6, 9, 4, 3, 6, 6, 4, 1, 1, 4, 3, 3, 9, 1, 6, 2, 1, 6, 0, 7, 3, 7, 3, 3, 2, 9, 7, 2, 3, 1, 7, 4, 0, 9, 9, 5, 0, 3, 5, 6, 5, 7, 6, 3, 7, 1, 4, 2, 7, 1, 3, 9, 8, 0, 9, 5, 9, 8, 2, 0, 6, 8, 6, 7, 1, 1, 6, 7, 6, 8, 3, 9
Offset: 0

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 81 degrees. - Mohammad K. Azarian, Jun 30 2013

Programs

  • Mathematica
    RealDigits[Tan[9 Degree],10,120][[1]] (* Harvey P. Dale, Aug 23 2020 *)

Formula

Equals tan(Pi/20) = A019818/A019890. - R. J. Mathar, Aug 29 2025
Smallest positive of the 8 real-valued roots of x^8-44*x^6+166*x^4-44*x^2+1=0. (Others A019925, A019961, A019979). - R. J. Mathar, Aug 31 2025
Equals A019827/(1+A019881). - R. J. Mathar, Sep 06 2025
Previous Showing 21-30 of 32 results. Next