cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 64 results. Next

A324262 a(n) is the smallest term of A324261 with 2n digits if it exists, otherwise 0.

Original entry on oeis.org

0, 0, 0, 0, 13731373, 1190911909, 0, 19090911909091, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7316763215964848081373167632159648480813, 111272689909091345969111272689909091345969, 10527889691056689261011052788969105668926101, 0, 0, 0, 0
Offset: 0

Views

Author

Deron Stewart, Mar 13 2019

Keywords

Comments

There can be a large number of terms in A324261 with 2n digits. For example, there are 227 terms with length 66. Selecting only the smallest term for each length allows terms to be listed for larger values of n.
The terms of A324261 with length 2n are formed by concatenating two copies of prime p, where p has length n and the decimal representation of p contains all the prime factors of 10^n + 1 as described in A324261 and A083359.
Subsequence of A020338 (Doublets: base-10 representation is the juxtaposition of two identical strings).

Examples

			With m = 27 there are three prime p's: 114175966169705419295257913, 352579141759661697054192911 and 525791141759661697054192913. The smallest p concatenated with itself gives a(27) = 114175966169705419295257913114175966169705419295257913.
With m = 28 there are no solutions so a(28) = 0.
		

Crossrefs

A345391 a(n) is the least proper multiple of n with the same set of decimal digits as n.

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 100, 1111, 1212, 1131, 1414, 1155, 1616, 1717, 1188, 1919, 200, 2121, 2222, 322, 2424, 225, 2262, 2727, 2828, 2929, 300, 1333, 3232, 3333, 3434, 3535, 3636, 3737, 3838, 3393, 400, 4141, 4242, 344, 4444, 4455, 644, 4747
Offset: 1

Views

Author

Rémy Sigrist, Jun 17 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = { my (d=Set(digits(n))); forstep (m=2*n, oo, n, if (Set(digits(m))==d, return (m))) }
    
  • Python
    def a(n):
        kn, ss = 2*n, set(str(n))
        while set(str(kn)) != ss: kn += n
        return kn
    print([a(n) for n in range(1, 49)]) # Michael S. Branicky, Jun 17 2021

Formula

a(n) <= A020338(n) for any n > 0.

A385623 Array read by ascending antidiagonals: A(n,k) is the number obtained by concatenation of n with k in that order, with k >= 0.

Original entry on oeis.org

0, 10, 1, 20, 11, 2, 30, 21, 12, 3, 40, 31, 22, 13, 4, 50, 41, 32, 23, 14, 5, 60, 51, 42, 33, 24, 15, 6, 70, 61, 52, 43, 34, 25, 16, 7, 80, 71, 62, 53, 44, 35, 26, 17, 8, 90, 81, 72, 63, 54, 45, 36, 27, 18, 9, 100, 91, 82, 73, 64, 55, 46, 37, 28, 19, 10, 110, 101, 92, 83, 74, 65, 56, 47, 38, 29, 110, 11
Offset: 0

Views

Author

Stefano Spezia, Jul 05 2025

Keywords

Examples

			Array begins as:
   0,  1,  2,  3,  4,  5,  6,  7, ...
  10, 11, 12, 13, 14, 15, 16, 17, ...
  20, 21, 22, 23, 24, 25, 26, 27, ...
  30, 31, 32, 33, 34, 35, 36, 37, ...
  40, 41, 42, 43, 44, 45, 46, 47, ...
  50, 51, 52, 53, 54, 55, 56, 57, ...
  60, 61, 62, 63, 64, 65, 66, 67, ...
  ...
		

Crossrefs

Cf. A001477 (1st row), A020338 (main diagonal), A055642, A385624 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=FromDigits[Join[IntegerDigits[n],IntegerDigits[k]]]; Table[A[n,k],{n,0,6},{k,0,7}] (* or *)
    A[n_,k_]:=If[k==0,10n,n*10^(Floor[Log10[k]]+1)+k]; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten
  • PARI
    T(n, k) = fromdigits(concat(digits(n), digits(k))); \\ Michel Marcus, Jul 06 2025

Formula

A(n,0) = 10*n and A(n,k) = n*10^(floor(log_10(k)) + 1) + k for k > 0.

A074843 Quadruplets: base 10 representation is the juxtaposition of four identical strings.

Original entry on oeis.org

1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999, 10101010, 11111111, 12121212, 13131313, 14141414, 15151515, 16161616, 17171717, 18181818, 19191919, 20202020, 21212121, 22222222, 23232323, 24242424, 25252525
Offset: 1

Views

Author

Felice Russo, Sep 10 2002

Keywords

Comments

Doublets in which the index is also a doublet. - Jamie Robert Creasey, Jun 23 2021

Crossrefs

Cf. A020338.

Programs

  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits/@PadRight[{},4,n]]],{n,30}] (* Harvey P. Dale, Dec 20 2021 *)
  • PARI
    a(n)=eval(Str(n,n,n,n)) \\ Charles R Greathouse IV, Jun 23 2021
  • UBASIC
    10 cls 30 for I=1 to 100 40 A=str(I) 50 C=A+A+A+A 60 B=val(cutspc(C)) 80 print B 90 next 100 end
    

Formula

A105814 a(n) = n^2 + (n concatenated with n).

Original entry on oeis.org

12, 26, 42, 60, 80, 102, 126, 152, 180, 1110, 1232, 1356, 1482, 1610, 1740, 1872, 2006, 2142, 2280, 2420, 2562, 2706, 2852, 3000, 3150, 3302, 3456, 3612, 3770, 3930, 4092, 4256, 4422, 4590, 4760, 4932, 5106, 5282, 5460, 5640, 5822, 6006, 6192, 6380, 6570
Offset: 1

Views

Author

Eric Angelini, May 05 2005

Keywords

Examples

			1 + 11 = 12, 4 + 22 = 26, 9 + 33 = 42, 16 + 44 = 60, ..., 100 + 1010 = 1110.
		

Crossrefs

Cf. A020338.

Programs

  • Magma
    [Seqint(Intseq(n) cat Intseq(n))+n^2: n in [1..50]]; // Vincenzo Librandi, Jul 31 2015
    
  • Magma
    [n^2+n*(1+10^(1+Floor(Log(n)/Log(10)))): n in [1..50]]; // Vincenzo Librandi, Jul 31 2015
    
  • Maple
    seq(n^2 + n*(1+10^(1+ilog10(n))),n=1..100); # Robert Israel, Jul 30 2015
  • Mathematica
    f[n_] := Block[{id = IntegerDigits[n]}, n^2 + FromDigits[ Join[id, id]]]; Table[ f[n], {n, 45}] (* Robert G. Wilson v, May 10 2005 *)
  • PARI
    vector(50, n, n^2 + eval(Str(n,n))) \\ Michel Marcus, Jul 31 2015
    
  • Python
    def a(n): return n**2 + int(str(n)*2)
    print([a(n) for n in range(1, 47)]) # Michael S. Branicky, Dec 26 2021

Formula

a(n) = n^2 + n*(1+10^(1+floor(log_10(n)))). - Robert Israel, Jul 30 2015
a(n) = n^2 + A020338(n). - Michel Marcus, Jul 31 2015

Extensions

More terms from Robert G. Wilson v, May 10 2005

A206529 7^n concatenated with itself.

Original entry on oeis.org

11, 77, 4949, 343343, 24012401, 1680716807, 117649117649, 823543823543, 57648015764801, 4035360740353607, 282475249282475249, 19773267431977326743, 1384128720113841287201, 9688901040796889010407, 678223072849678223072849
Offset: 0

Views

Author

Vincenzo Librandi, Mar 18 2012

Keywords

Examples

			a(1)=77 because 7^1 concatenated with 7^1 is 77.
		

Crossrefs

Programs

  • Magma
    [Seqint(Intseq(7^n) cat Intseq(7^n)): n in [0..20]];
  • Mathematica
    Table[FromDigits[Join[IntegerDigits[7^n],IntegerDigits[7^n]]],{n,0,20}]
    #*10^IntegerLength[#]+#&/@(7^Range[0,20]) (* Harvey P. Dale, Jul 19 2022 *)

Formula

a(n) = A020338(7^n).

A222962 Primes of the form kk*k+k+1, where kk is the concatenation of k with itself.

Original entry on oeis.org

13, 47, 103, 181, 281, 547, 10111, 14557, 22741, 25873, 29207, 44563, 48907, 53453, 90931, 103457, 110023, 116791, 161641, 169823, 178207, 186793, 195581, 232753, 242551, 273157, 283763, 305581, 316793, 440023, 523657, 538303, 568201, 614563, 662743
Offset: 1

Views

Author

Vincenzo Librandi, Mar 18 2013

Keywords

Comments

Corresponding values of k are: 1, 2, 3, 4, 5, 7, 10, 12, 15, 16, 17, 21, 22, 23, 30, 32, 33, 34, 40, 41, 42, 43, 44, 48, 49, 52, 53, 55, 56, 66, 72, 73, 75, 78, 81, 82, 83, 92,...
a(7), a(43) and a(204) (see b-file) have the form 10^(3n+1)+10^(2n)+10^n+1 = (10^(n+1)*10^n+10^n)*10^n+10^n+1. The next term of this type is 10^247+10^164+10^82+1.

Examples

			22741 is in the sequence because it is prime and 22741=1515*15+15+1.
		

Crossrefs

Programs

  • Magma
    [p: n in [0..100] | IsPrime(p) where p is Seqint(Intseq(n) cat Intseq(n))*n+n+1]; // Bruno Berselli, Mar 21 2013
  • Mathematica
    f[n_] := FromDigits@Flatten@IntegerDigits[{n, n}] n + n + 1; Select[Table[f[n], {n, 100}], PrimeQ] (* Bruno Berselli, Mar 21 2013 *)
    Select[Table[n(n*10^IntegerLength[n]+n)+n+1,{n,100}],PrimeQ] (* Harvey P. Dale, Oct 29 2023 *)

Extensions

Edited by Bruno Berselli, Mar 22 2013

A248126 a(n) = n^2 with each digit repeated.

Original entry on oeis.org

11, 44, 99, 1166, 2255, 3366, 4499, 6644, 8811, 110000, 112211, 114444, 116699, 119966, 222255, 225566, 228899, 332244, 336611, 440000, 444411, 448844, 552299, 557766, 662255, 667766, 772299, 778844, 884411, 990000, 996611, 11002244, 11008899, 11115566
Offset: 1

Views

Author

Jon Perry, Nov 01 2014

Keywords

Comments

Inspired by A116699.

Examples

			13^2 = 169, so a(13) = 116699.
		

Crossrefs

Programs

  • JavaScript
    for (i=1;i<40;i++) {
    s=(i*i).toString();
    for (j=0;j
    				
  • Mathematica
    a248126[n_Integer] :=
    Module[{m}, m := IntegerDigits[n^2];
      FromDigits[Flatten[Transpose[List[m, m]]]]]; a248126 /@ Range[34] (* Michael De Vlieger, Nov 06 2014 *)
    Table[FromDigits[Riffle[id=IntegerDigits[n^2],id]],{n,40}] (* Harvey P. Dale, Dec 19 2015 *)
  • PARI
    a(n)= my(d = 11*digits(n^2)); fromdigits(d, 100) \\ David A. Corneth, Dec 02 2023
    
  • Python
    def a(n): return int("".join(d*2 for d in str(n**2)))
    print([a(n) for n in range(1, 35)]) # Michael S. Branicky, Dec 02 2023

A248365 4n concatenated with itself.

Original entry on oeis.org

44, 88, 1212, 1616, 2020, 2424, 2828, 3232, 3636, 4040, 4444, 4848, 5252, 5656, 6060, 6464, 6868, 7272, 7676, 8080, 8484, 8888, 9292, 9696, 100100, 104104, 108108, 112112, 116116, 120120, 124124, 128128, 132132, 136136, 140140, 144144, 148148, 152152, 156156
Offset: 1

Views

Author

Jacy Fang, Oct 05 2014

Keywords

Crossrefs

Cf. A020338 (n), A248038 (3n), A248422 (2n).

Programs

  • Mathematica
    a248038[n_Integer] := Module[{m, t}, m := ToString[4 n ]; ToExpression[m <> m]]; a248038 /@ Range[50]; (* Michael De Vlieger, Nov 06 2014 *)
  • Python
    {print(str(4*n)*2,end=', ') for n in range(1,50)} # Derek Orr, Oct 05 2014

A324261 Subsequence of A083359 (Visual Factor Numbers) of the form (10^m+1)*p, where the decimal representation of prime p contains all the prime factors of 10^m+1.

Original entry on oeis.org

13731373, 31373137, 1190911909, 9091190911, 19090911909091, 7316763215964848081373167632159648480813, 111272689909091345969111272689909091345969, 111279090913268945969111279090913268945969, 112726894596919090913112726894596919090913
Offset: 1

Views

Author

Deron Stewart, Mar 13 2019

Keywords

Comments

Subsequence of A020338 (Doublets: base-10 representation is the juxtaposition of two identical strings).
The prime factors of 10^m + 1 are also prime factors of 10^km + 1, where k is odd, so a(n) and a(km) have those prime factors in common.
Expanding on the comment in A083359 regarding finding large terms, we can generate large doublet terms in the following way:
-- for any composite number M = 10^m + 1 try to compose a prime number p of length m from the prime factors of M. Generally this will require the factors to overlap to reduce the length to m.
-- the factors can wrap around to the beginning of p. For example, if M has a factor of 137 then p can be of the form 7...13.
-- the term is formed by concatenating p with itself to form a(n) = p||p. The resulting number will consist entirely of the concatenation of its prime factors with allowed overlap as in A083359.

Examples

			With m = 4: 10^4 + 1 = 10001 = 73 * 137. We can form prime p = 1373 which concatenates with itself to give a(1) = 13731373 = 73 * 137 * 1373. We can also form the prime p = 3137 which gives a(2). The number 7313 also contains all the prime factors of 10001 but it is not prime.
With m = 33: 10^33 + 1 = 7*11*11*13*23*4093*8779*599144041*183411838171, there are 4932 m-digit numbers that contain all the factors, of which 227 of them are prime. Each of these primes generates a term in the sequence with 66 digits, the smallest of which is 112359914404134093877918341183817112359914404134093877918341183817. This is A324262(33).
		

Crossrefs

Previous Showing 51-60 of 64 results. Next