cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A260266 Primes having only {0, 1, 4} as digits.

Original entry on oeis.org

11, 41, 101, 401, 4001, 4111, 4441, 10111, 10141, 11411, 14011, 14401, 14411, 40111, 41011, 41141, 41411, 44041, 44101, 44111, 100411, 101111, 101141, 101411, 110441, 114001, 114041, 140111, 140401, 140411, 141041, 141101, 400441, 401101, 401411, 404011
Offset: 1

Views

Author

Vincenzo Librandi, Jul 22 2015

Keywords

Comments

A020449 and A020452 are subsequences.
All terms end with a digit "1". - M. F. Hasler, Jul 26 2015

Crossrefs

Primes that contain only digits among {1,4,k}: this sequence (k=0), A260267 (k=2), A199341 (k=3), A260268 (k=5), A260269 (k=6), A079651 (k=7), A260270 (k=8), A260271 (k=9).

Programs

  • Magma
    [p: p in PrimesUpTo(5*10^5) | Set(Intseq(p)) subset [1, 4, 0]];
    
  • Mathematica
    Select[Prime[Range[4 10^4]], Complement[IntegerDigits[#], {1, 4, 0}]=={} &]
  • PARI
    A260266(n=50,show=0)={for(d=1,1e9,my(t,u=vector(d,i,10^(d-i))~);forvec(v=vector(d,i,[i==1||i==d,1+(iM. F. Hasler, Jul 25 2015

A199327 Primes having only {0, 1, 7} as digits.

Original entry on oeis.org

7, 11, 17, 71, 101, 107, 701, 1117, 1171, 1777, 7001, 7177, 7717, 10007, 10111, 10177, 10711, 10771, 11071, 11117, 11171, 11177, 11701, 11717, 11777, 17011, 17077, 17107, 17117, 17707, 70001, 70111, 70117, 70177, 70717, 71011, 71171, 71707, 71711, 71777, 77017, 77101, 77171, 77711, 101107, 101111, 101117
Offset: 1

Views

Author

M. F. Hasler, Nov 05 2011

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(80000) | Intseq(p) subset {0,1,7}]; // Vincenzo Librandi, Jan 16 2020
  • Mathematica
    f[i_,nn_]:=Select[Flatten[Table[FromDigits/@(Join[{i},#]&/@Tuples[ {0,1,7}, n]), {n,0,nn}]],PrimeQ]; Union[Join[f[1,6],f[7,6]]] (* Harvey P. Dale, Nov 19 2011 *)
    Select[Prime[Range[2 10^4]], Complement[IntegerDigits[#], {0, 1, 7}]=={}&] (* Vincenzo Librandi, Jan 16 2020 *)
  • PARI
    a(n,list=0,L=[0,1,7])={for(d=1,1e9,my(t,u=vector(d,i,10^(d-i))~);forvec(v=vector(d,i,[1+!(L[1]||(i>1&&iM. F. Hasler, Jul 26 2015
    

A260044 Primes having only {0, 1, 3} as digits.

Original entry on oeis.org

3, 11, 13, 31, 101, 103, 113, 131, 311, 313, 331, 1013, 1031, 1033, 1103, 1301, 1303, 3001, 3011, 3301, 3313, 3331, 10103, 10111, 10133, 10301, 10303, 10313, 10331, 10333, 11003, 11113, 11131, 11311, 13001, 13003, 13033, 13103, 13313, 13331, 30011, 30013, 30103, 30113, 30133, 30313, 31013, 31033, 31333, 33013
Offset: 1

Views

Author

M. F. Hasler, Jul 25 2015

Keywords

Comments

A subsequence of A107715 and of A111488.
Number of terms < 10^n: 1, 4, 11, 22, 54, 118, 293, 691, 1837, 4871, 13321, 36042, 98325, 272237, 757080, .... - Robert G. Wilson v, Jul 26 2015

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(10^5) | Set(Intseq(p)) subset [0, 1, 3]]; // Vincenzo Librandi, Jul 26 2015
  • Mathematica
    Select[ FromDigits@# & /@ Tuples[{0, 1, 3}, 5], PrimeQ] (* Robert G. Wilson v, Jul 26 2015 *)
    Select[Prime[Range[4 10^3]], Complement[IntegerDigits[#], {0, 1, 3}]=={} &] (* Vincenzo Librandi, Jul 26 2015 *)
  • PARI
    A260044={(n,show=0,L=[0,1,3])->my(t);for(d=1,1e9,u=vector(d,i,10^(d-i))~;forvec(v=vector(d,i,[1+(i==1&!L[1]),#L]),ispseudoprime(t=vector(d,i,L[v[i]])*u)||next;show&print1(t",");n--||return(t)))}
    

A069662 Largest n-digit prime with maximum digit sum.

Original entry on oeis.org

7, 89, 997, 8999, 99989, 989999, 9899999, 99999989, 998999999, 9999898999, 99989999999, 999999999989, 9999999999799, 99999999899999, 999999999999989, 9999999999989999, 99999999999899999, 999999999999999989, 9998999999999999999, 99999999999999999989
Offset: 1

Views

Author

Amarnath Murthy, Apr 05 2002

Keywords

Crossrefs

Cf. A069661, A020472 (primes with digits 8 and 9 only), A003618 (largest n-digit prime).

Extensions

More terms from Rick L. Shepherd, Jul 15 2002. a(5) through a(20) have been certified prime with Primo.

A199341 Primes having only {1, 3, 4} as digits.

Original entry on oeis.org

3, 11, 13, 31, 41, 43, 113, 131, 311, 313, 331, 431, 433, 443, 1433, 3313, 3331, 3343, 3413, 3433, 4111, 4133, 4441, 11113, 11131, 11311, 11411, 11443, 13313, 13331, 13411, 13441, 14143, 14341, 14411, 14431, 31333, 33113, 33311, 33331, 33343, 33413, 34141, 34313
Offset: 1

Views

Author

M. F. Hasler, Nov 05 2011

Keywords

Comments

A020451, A020452 and A020461 are subsequences. - Vincenzo Librandi, Jul 26 2015

Crossrefs

Cf. similar sequences listed in A199340.

Programs

  • Magma
    [p: p in PrimesUpTo(10^5) | Set(Intseq(p)) subset [3, 4, 1]]; // Vincenzo Librandi, Jul 26 2015
  • Maple
    Dmax:= 5: # to get all terms < 10^Dmax
    Cd:= {1,3,4}:
    C:= Cd:
    for d from 2 to Dmax do
      Cd:= map(t -> (10*t+1,10*t+3,10*t+4),Cd);
      C:= C union Cd;
    od:
    sort(convert(select(isprime,C),list)); # Robert Israel, Jul 26 2015
  • Mathematica
    Select[Prime[Range[4 10^3]], Complement[IntegerDigits[#], {3, 4, 1}]=={} &] (* Vincenzo Librandi, Jul 26 2015 *)
  • PARI
    a(n, list=0, L=[1, 3, 4], reqpal=0)={my(t); for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&!L[1]), #L]), isprime(t=vector(d, i, L[v[i]])*u)||next; reqpal & !isprime(A004086(t)) & next; list & print1(t", "); n--||return(t)))}
    

A199342 Primes having only {2, 3, 4} as digits.

Original entry on oeis.org

2, 3, 23, 43, 223, 233, 433, 443, 2243, 2333, 2423, 3323, 3343, 3433, 4243, 4423, 22343, 22433, 23333, 24223, 24443, 32233, 32323, 32423, 32443, 33223, 33343, 42223, 42323, 42433, 42443, 43223, 222323, 223243, 223423, 224233, 224423, 224443, 232333, 232433, 233323, 233423, 234323, 234343, 242243, 243233, 243343, 243433, 244243, 244333
Offset: 1

Views

Author

M. F. Hasler, Nov 05 2011

Keywords

Comments

A020458 and A020461 are subsequences. - Vincenzo Librandi, Jul 28 2015

Crossrefs

Cf. similar sequences listed in A199340.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [3, 4, 2]]; // Vincenzo Librandi, Jul 28 2015
  • Mathematica
    Select[Prime[Range[10^5]], Complement[IntegerDigits[#], {3, 4, 2}]=={}&] (* Vincenzo Librandi, Jul 28 2015 *)
    Table[Select[FromDigits/@Tuples[{2,3,4},n],PrimeQ],{n,6}]//Flatten (* Harvey P. Dale, Nov 06 2019 *)
  • PARI
    a(n, list=0, L=[2, 3, 4], reqpal=0)={my(t); for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&!L[1]), #L]), isprime(t=vector(d, i, L[v[i]])*u)||next; reqpal & !isprime(A004086(t)) & next; list & print1(t", "); n--||return(t)))}
    

A199345 Primes having only {3, 4, 5} as digits.

Original entry on oeis.org

3, 5, 43, 53, 353, 433, 443, 3343, 3433, 3533, 5333, 5443, 33343, 33353, 33533, 34543, 35353, 35533, 35543, 43543, 44453, 44533, 44543, 45343, 45433, 45533, 45553, 53353, 53453, 54443, 55333, 55343, 333433, 333533, 334333, 335453, 343333, 343433, 343543, 344353, 344453, 344543, 345533, 353333, 353443, 353453, 354353, 354443
Offset: 1

Views

Author

M. F. Hasler, Nov 05 2011

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(4*10^5) | Set(Intseq(p)) subset [3..5]]; // Bruno Berselli, Nov 07 2011
  • Mathematica
    Join[{3,5},Select[Flatten[Table[FromDigits/@(Join[#,{3}]&/@ Tuples[ {3,4,5},n]),{n,5}]],PrimeQ]] (* Harvey P. Dale, Aug 31 2015 *)
  • PARI
    a(n, list=0, L=[3, 4, 5], reqpal=0)={my(t); for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&!L[1]), #L]), isprime(t=vector(d, i, L[v[i]])*u) || next; reqpal & !isprime(A004086(t)) & next; list & print1(t", "); n--||return(t)))}
    

A385800 Primes having only {6, 8, 9} as digits.

Original entry on oeis.org

89, 6689, 6869, 6899, 8669, 8689, 8699, 8969, 8999, 9689, 66889, 68669, 68699, 68899, 69899, 86689, 86869, 86969, 88969, 89669, 89689, 89899, 89989, 96989, 98669, 98689, 98869, 98899, 98999, 99689, 99989, 666889, 666989, 668699, 668869, 668989, 668999, 669689, 669869
Offset: 1

Views

Author

Jason Bard, Jul 14 2025

Keywords

Crossrefs

Subsequence of A030431, A106111.
Supersequence of A020472.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [6, 8, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{6, 8, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [6, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("689"), 41))) # uses function/imports in A385776
    

A199346 Primes having only {3, 4, 6} as digits.

Original entry on oeis.org

3, 43, 433, 443, 463, 643, 3343, 3433, 3463, 3643, 4363, 4463, 4643, 4663, 6343, 33343, 36343, 36433, 36643, 43633, 44633, 46633, 46643, 46663, 63443, 63463, 64333, 64433, 64633, 64663, 66343, 66463, 66643, 333433, 334333, 334363, 334643, 336463, 336643, 343333, 343433, 344363, 346433, 363343, 363463, 364333, 364433, 364643
Offset: 1

Views

Author

M. F. Hasler, Nov 05 2011

Keywords

Comments

All terms end in 3 and have a number of digits '4' that is not divisible by 3.
A020461 is a subsequence. - Vincenzo Librandi, Jul 29 2015

Crossrefs

Cf. similar sequences listed in A199340.

Programs

  • Magma
    [p: p in PrimesUpTo(4*10^5) | Set(Intseq(p)) subset [3, 4, 6]]; // Vincenzo Librandi, Jul 29 2015
  • Mathematica
    Select[Flatten[Table[FromDigits/@(Flatten[{#,3},1]&/@Tuples[{3,4,6},n]),{n,0,5}]],PrimeQ] (* Harvey P. Dale, Jan 01 2013 *)
    Select[Prime[Range[10^5]], Complement[IntegerDigits[#], {3, 4, 6}]=={}&] (* Vincenzo Librandi, Jul 28 2015 *)
  • PARI
    a(n, list=0, L=[3, 4, 6], reqpal=0)={my(t); for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&!L[1]), #L]), isprime(t=vector(d, i, L[v[i]])*u) || next; reqpal & !isprime(A004086(t)) & next; list & print1(t", "); n--||return(t)))}
    

A199347 Primes having only {3, 4, 7} as digits.

Original entry on oeis.org

3, 7, 37, 43, 47, 73, 337, 347, 373, 433, 443, 733, 743, 773, 3343, 3347, 3373, 3433, 3733, 4337, 4373, 4447, 4733, 7333, 7433, 7477, 33343, 33347, 33377, 33773, 34337, 34747, 37337, 37447, 37747, 43777, 44773, 44777, 47737, 47743, 47777, 73433, 73477, 74377, 74747, 77347, 77377, 77447, 77477, 77743
Offset: 1

Views

Author

M. F. Hasler, Nov 05 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Flatten[Table[FromDigits/@Tuples[{3,4,7},n],{n,5}]],PrimeQ] (* Harvey P. Dale, Jul 31 2012 *)
  • PARI
    a(n, list=0, L=[3, 4, 7], reqpal=0)={my(t); for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&!L[1]), #L]), isprime(t=vector(d, i, L[v[i]])*u) || next; reqpal & !isprime(A004086(t)) & next; list & print1(t", "); n--||return(t)))}
Previous Showing 11-20 of 41 results. Next