cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A182972 Numerators of positive rationals < 1 arranged by increasing sum of numerator and denominator then by increasing numerator.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 3, 1, 3, 1, 2, 4, 1, 3, 1, 2, 3, 4, 5, 1, 5, 1, 2, 3, 4, 5, 6, 1, 3, 5, 1, 2, 4, 7, 1, 3, 5, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 5, 7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 3, 7, 9, 1, 2, 4, 5, 8, 10, 1, 3, 5, 7, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 5, 7, 11, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 1, 3, 5, 7, 9, 11
Offset: 1

Views

Author

William Rex Marshall, Dec 16 2010

Keywords

Comments

A023022(n) and A245677(n) give number and numerator of sum of fractions a(k)/A182973(k) such that a(k) + A182973(k) = n. - Reinhard Zumkeller, Jul 30 2014

Examples

			Positive fractions < 1 listed by increasing sum of numerator and denominator, and by increasing numerator for equal sums:
1/2
1/3
1/4 2/3
1/5
1/6 2/5 3/4
1/7 3/5
1/8 2/7 4/5
1/9 3/7
1/10 2/9 3/8 4/7 5/6
1/11 5/7
1/12 2/11 3/10 4/9 5/8 6/7
1/13 3/11 5/9
1/14 2/13 4/11 7/8
1/15 3/13 5/11 7/9
1/16 2/15 3/14 4/13 5/12 6/11 7/10 8/9
1/17 5/13 7/11
1/18 2/17 3/16 4/15 5/14 6/13 7/12 8/11 9/10
1/19 3/17 7/13 9/11
(this is A182972/A182973).
		

References

  • S. Cook, Problem 511: An Enumeration Problem, Journal of Recreational Mathematics, Vol. 9:2 (1976-77), 137. Solution by the Problem Editor, JRM, Vol. 10:2 (1977-78), 122-123.
  • R. K. Guy, Unsolved Problems in Number Theory (UPINT), Section D11.

Crossrefs

Cf. A182973 (denominators), A366191 (interleaved).
Essentially the same as A333856.

Programs

  • Haskell
    a182972 n = a182972_list !! (n-1)
    a182972_list = map fst $ concatMap q [3..] where
       q x = [(num, den) | num <- [1 .. div x 2],
                           let den = x - num, gcd num den == 1]
    -- Reinhard Zumkeller, Jul 29 2014
    
  • Maple
    t1:=[];
    for n from 2 to 40 do
    t1:=[op(t1),1/(n-1)];
    for i from 2 to floor((n-1)/2) do
       if gcd(i,n-i)=1 then t1:=[op(t1),i/(n-i)]; fi; od:
    od:
    t1;
  • Mathematica
    t1={}; For[n=2, n <= 40, n++, AppendTo[t1, 1/(n-1)]; For[i=2, i <= Floor[(n-1)/2], i++, If[GCD[i, n-i] == 1, AppendTo[t1, i/(n-i)]]]]; t1 // Numerator // Rest (* Jean-François Alcover, Jan 20 2015, translated from Maple *)
  • Pascal
    program a182972;
    var
      num,den,n: longint;
    function gcd(i,j: longint):longint;
    begin
      repeat
        if i>j then i:=i mod j else j:=j mod i;
      until (i=0) or (j=0);
      if i=0 then gcd:=j else gcd:=i;
    end;
    begin
      num:=1; den:=1; n:=0;
      repeat
        repeat
          inc(num); dec(den);
          if num>=den then
          begin
            inc(den,num); num:=1;
          end;
        until gcd(num,den)=1;
        inc(n); writeln(n,' ',num);
      until n=100000;
    end.
    
  • Python
    from itertools import count, islice
    from math import gcd
    def A182972_gen(): # generator of terms
        return (i for n in count(2) for i in range(1,1+(n-1>>1)) if gcd(i,n-i)==1)
    A182972_list = list(islice(A182972_gen(),10)) # Chai Wah Wu, Aug 28 2023

Extensions

Corrected by William Rex Marshall, Aug 12 2013

A038569 Denominators in a certain bijection from positive integers to positive rationals.

Original entry on oeis.org

1, 2, 1, 3, 1, 3, 2, 4, 1, 4, 3, 5, 1, 5, 2, 5, 3, 5, 4, 6, 1, 6, 5, 7, 1, 7, 2, 7, 3, 7, 4, 7, 5, 7, 6, 8, 1, 8, 3, 8, 5, 8, 7, 9, 1, 9, 2, 9, 4, 9, 5, 9, 7, 9, 8, 10, 1, 10, 3, 10, 7, 10, 9, 11, 1, 11, 2, 11, 3, 11, 4, 11, 5, 11, 6, 11, 7, 11, 8, 11, 9, 11, 10, 12, 1, 12, 5, 12, 7, 12, 11, 13, 1, 13
Offset: 0

Views

Author

Keywords

Comments

See A020652/A020653 for an alternative version where the fractions p/q are listed by increasing p+q, then p. - M. F. Hasler, Nov 25 2021

Examples

			First arrange the positive fractions p/q <= 1 by increasing denominator, then by increasing numerator:
1/1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, ... (this is A038566/A038567).
Now follow each but the first term by its reciprocal:
1/1, 1/2, 2/1, 1/3, 3/1, 2/3, 3/2, 1/4, 4/1, 3/4, 4/3, ... (this is A038568/A038569).
		

References

  • H. Lauwerier, Fractals, Princeton Univ. Press, p. 23.

Crossrefs

See A020652, A020653 for an alternative version.

Programs

  • Maple
    with (numtheory): A038569 := proc (n) local sum, j, k; sum := 1: k := 2: while (sum < n) do: sum := sum + 2 * phi(k): k := k + 1: od: sum := sum - 2 * phi(k-1): j := 1: while sum < n do: if gcd(j,k-1) = 1 then sum := sum + 2: fi: j := j+1: od: if sum > n then RETURN (k-1) fi: RETURN (j-1): end: # Ulrich Schimke (ulrschimke(AT)aol.com)
  • Mathematica
    a[n_] := Module[{s = 1, k = 2, j = 1}, While[s <= n, s = s + 2*EulerPhi[k]; k = k+1]; s = s - 2*EulerPhi[k-1]; While[s <= n, If[GCD[j, k-1] == 1, s = s+2]; j = j+1]; If[s > n+1, k-1, j-1]]; Table[a[n], {n, 0, 99}](* Jean-François Alcover, Nov 10 2011, after Maple *)
  • PARI
    a(n) = { my (e); for (q=1, oo, if (n+1<2*e=eulerphi(q), for (p=1, oo, if (gcd(p,q)==1, if (n+1<2, return ([q,p][n+2]), n-=2))), n-=2*e)) } \\ Rémy Sigrist, Feb 25 2021
  • Python
    from sympy import totient, gcd
    def a(n):
        s=1
        k=2
        while s<=n:
            s+=2*totient(k)
            k+=1
        s-=2*totient(k - 1)
        j=1
        while s<=n:
            if gcd(j, k - 1)==1: s+=2
            j+=1
        if s>n + 1: return k - 1
        return j - 1 # Indranil Ghosh, May 23 2017, translated from Mathematica
    

Extensions

More terms from Erich Friedman
Definition clarified by N. J. A. Sloane, Nov 25 2021

A182973 Denominators of positive rationals < 1 arranged by increasing sum of numerator and denominator then by increasing numerator.

Original entry on oeis.org

2, 3, 4, 3, 5, 6, 5, 4, 7, 5, 8, 7, 5, 9, 7, 10, 9, 8, 7, 6, 11, 7, 12, 11, 10, 9, 8, 7, 13, 11, 9, 14, 13, 11, 8, 15, 13, 11, 9, 16, 15, 14, 13, 12, 11, 10, 9, 17, 13, 11, 18, 17, 16, 15, 14, 13, 12, 11, 10, 19, 17, 13, 11, 20, 19, 17, 16, 13, 11, 21, 19, 17, 15, 13, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12
Offset: 1

Views

Author

William Rex Marshall, Dec 16 2010

Keywords

Comments

A023022(n) and A245678(n) give number and denominator of sum of fractions A182972(k)/a(k) such that A182972(k) + a(k) = n. - Reinhard Zumkeller, Jul 30 2014

Examples

			Positive fractions < 1 listed by increasing sum of numerator and denominator, and by increasing numerator for equal sums:
1/2, 1/3, 1/4, 2/3, 1/5, 1/6, 2/5, 3/4, 1/7, 3/5, 1/8, 2/7, 4/5, 1/9, 3/7, ...
(this is A182972/A182973).
		

References

  • S. Cook, Problem 511: An Enumeration Problem, Journal of Recreational Mathematics, Vol. 9:2 (1976-77), 137. Solution by the Problem Editor, JRM, Vol. 10:2 (1977-78), 122-123.
  • R. K. Guy, Unsolved Problems in Number Theory (UPINT), Section D11.

Crossrefs

Cf. A182972 (numerators), A366191 (interleaved).

Programs

  • Haskell
    a182973 n = a182973_list !! (n-1)
    a182973_list = map snd $ concatMap q [3..] where
       q x = [(num, den) | num <- [1 .. div x 2],
                           let den = x - num, gcd num den == 1]
    -- Reinhard Zumkeller, Jul 29 2014
    
  • Mathematica
    A182973list[s_] := Table[If[CoprimeQ[num, s-num], s-num, Nothing], {num, Floor[s/2]}]; Flatten[Array[A182973list, 25, 3]] (* Paolo Xausa, Feb 27 2024 *)
  • Pascal
    program a182973;
    var
      num,den,n: longint;
    function gcd(i,j: longint):longint;
    begin
      repeat
        if i>j then i:=i mod j else j:=j mod i;
      until (i=0) or (j=0);
      if i=0 then gcd:=j else gcd:=i;
    end;
    begin
      num:=1; den:=1; n:=0;
      repeat
        repeat
          inc(num); dec(den);
          if num>=den then
          begin
            inc(den,num); num:=1;
          end;
        until gcd(num,den)=1;
        inc(n); writeln(n,' ',den);
      until n=100000;
    end.
    
  • Python
    from itertools import count, islice
    from math import gcd
    def A182973_gen(): # generator of terms
        return (n-i for n in count(2) for i in range(1,1+(n-1>>1)) if gcd(i,n-i)==1)
    A182973_list = list(islice(A182973_gen(),10)) # Chai Wah Wu, Aug 28 2023

A071974 Numerator of rational number i/j such that Sagher map sends i/j to n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 7, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 4, 9, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 7, 3, 10, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2002

Keywords

Comments

The Sagher map sends Product p_i^e_i / Product q_i^f_i (p_i and q_i being distinct primes) to Product p_i^(2e_i) * Product q_i^(2f_i-1). This is multiplicative.

Examples

			The Sagher map sends the following fractions to 1, 2, 3, 4, ...: 1/1, 1/2, 1/3, 2/1, 1/5, 1/6, 1/7, 1/4, 3/1, ...
		

Crossrefs

Cf. A071975. Differs from A056622 at a(32).
For other bijective mappings from integers to positive rationals see A002487, A020652/A020653, A038568/A038569, A229994/A077610, A295515.
Cf. A307868.

Programs

  • Haskell
    a071974 n = product $ zipWith (^) (a027748_row n) $
       map (\e -> (1 - e `mod` 2) * e `div` 2) $ a124010_row n
    -- Reinhard Zumkeller, Jun 15 2012
    
  • Mathematica
    f[{p_, a_}] := If[EvenQ[a], p^(a/2), 1]; a[n_] := Times@@(f/@FactorInteger[n])
    Table[Sqrt@ SelectFirst[Reverse@ Divisors@ n, And[IntegerQ@ Sqrt@ #, CoprimeQ[#, n/#]] &], {n, 104}] (* Michael De Vlieger, Dec 06 2018 *)
  • PARI
    a(n)=local(v=factor(n)~); prod(k=1,length(v),if(v[2,k]%2,1,v[1,k]^(v[2,k]/2)))
    
  • Python
    from math import prod
    from sympy import factorint
    def A071974(n): return prod(p**(e>>1) for p, e in factorint(n).items() if e&1^1) # Chai Wah Wu, Jul 27 2024

Formula

If n=Product p_i^e_i, then a_n=Product p_i^f(e_i), where f(n)=n/2 if n is even and f(n)=0 if n is odd. - Reiner Martin, Jul 08 2002
a(n^2) = n, A071975(n^2) = 1, cf. A000290; a(2*(2*n-1)^2) = 2*n+1, A071975(2*(2*n-1)^2) = 2, cf. A077591. - Reinhard Zumkeller, Jul 10 2011
From Amiram Eldar, Nov 02 2023, Jul 26 2024: (Start)
a(n) = sqrt(A350388(n)) (square root of largest unitary divisor of n that is a square).
Dirichlet g.f.: zeta(2*s) * zeta(2*s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s) - 1/p^(3*s-1)). (End)
From Vaclav Kotesovec, May 05 2025: (Start)
Let f(s) = Product_{p prime} (1 - (p^s + p)/((p^s + 1)*p^(2*s))).
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * f(s).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
f(1) = A307868 = Product_{p prime} (1 - 2/(p*(1+p))) = 0.4716806136129978680752356330804820874259263820069868836357372554177321...
f'(1) = f(1) * Sum_{p prime} (5*p+3)*log(p) / ((p+1)*(p^2+p-2)) = f(1) * 2.1244279471327068377850377690765768532203174482128717024402373817115555...
and gamma is the Euler-Mascheroni constant A001620. (End)

Extensions

More terms from Reiner Martin, Jul 08 2002
Additional references supplied by Kevin Ryde added by N. J. A. Sloane, May 31 2012

A038568 Numerators in canonical bijection from positive integers to positive rationals.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 4, 1, 5, 2, 5, 3, 5, 4, 5, 1, 6, 5, 6, 1, 7, 2, 7, 3, 7, 4, 7, 5, 7, 6, 7, 1, 8, 3, 8, 5, 8, 7, 8, 1, 9, 2, 9, 4, 9, 5, 9, 7, 9, 8, 9, 1, 10, 3, 10, 7, 10, 9, 10, 1, 11, 2, 11, 3, 11, 4, 11, 5, 11, 6, 11, 7, 11, 8, 11, 9, 11, 10, 11, 1, 12, 5, 12, 7, 12, 11, 12, 1, 13, 2
Offset: 0

Views

Author

Keywords

Comments

Even-indexed terms are positive integers in order, with m occurring phi(m) times. Preceding odd-indexed terms (except for missing initial 0) are the corresponding numbers <= m and relatively prime to m, in increasing order. The denominators are just this sequence shifted left. Thus each positive rational occurs exactly once as a ratio a(n)/a(n+1). - Franklin T. Adams-Watters, Dec 06 2006

Examples

			First arrange fractions by increasing denominator, then by increasing numerator:
1/1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, ... (this is A038566/A038567);
now follow each term (except the first) with its reciprocal:
1/1, 1/2, 2/1, 1/3, 3/1, 2/3, 3/2, 1/4, 4/1, 3/4, 4/3, ... (this is A038568/A038569).
		

References

  • H. Lauwerier, Fractals, Princeton Univ. Press, p. 23.

Crossrefs

Programs

  • Julia
    using Nemo
    function A038568List(len)
        a, A = QQ(0), []
        for n in 1:len
            a = next_minimal(a)
            push!(A, numerator(a))
        end
    A end
    A038568List(84) |> println # Peter Luschny, Mar 13 2018
    
  • Maple
    with (numtheory): A038568 := proc (n) local sum, j, k; sum := 1: k := 2: while (sum < n) do: sum := sum + 2 * phi(k): k := k + 1: od: sum := sum - 2 * phi(k-1): j := 1: while sum < n do: if gcd(j,k-1) = 1 then sum := sum + 2: fi: j := j+1: od: if sum > n then RETURN (j-1) fi: RETURN (k-1): end: # Ulrich Schimke (ulrschimke(AT)aol.com)
  • Mathematica
    a[n_] := Module[{sum = 1, k = 2}, While[sum < n, sum = sum + 2*EulerPhi[k]; k = k+1]; sum = sum - 2*EulerPhi[k-1]; j = 1; While[sum < n, If[GCD[j, k-1] == 1, sum = sum+2]; j = j+1; ]; If[sum > n, Return[j-1]]; Return[k-1] ]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 21 2012, translated from Maple *)
  • PARI
    a(n) = { my (e); for (q=1, oo, if (n+1<2*e=eulerphi(q), for (p=1, oo, if (gcd(p,q)==1, if (n+1<2, return ([p,q][n+2]), n-=2))), n-=2*e)) } \\ Rémy Sigrist, Feb 25 2021
  • Python
    from sympy import totient, gcd
    def a(n):
        s=1
        k=2
        while sn: return j - 1
        return k - 1 # Indranil Ghosh, May 23 2017, translated from Mathematica
    

Extensions

More terms from Erich Friedman

A048705 The rule numbers for 1-D CA composed of Rules "90" and "150" so that each direction occurs only once.

Original entry on oeis.org

90, 150, 1721342310, 140117185019831836588493434554119984790, 113427455640312821160607117168492587690
Offset: 1

Views

Author

Antti Karttunen, Mar 09 1999

Keywords

Comments

The "numerator" (0, 1 and the rest from A020652) is the multiplicity of the "Rule 150" component and the "denominator" (1, 0 and the rest from A020653) is the multiplicity of the "Rule 90" component.
The resulting numbers define one-dimensional linear cellular automata with radius being the sum of the number of the "90" and "150" components.
In hexadecimal the sequence is 5A, 96, 66999966, 69699696969669699696696969699696, 5555555555555555AAAAAAAAAAAAAAAA, ...

Crossrefs

A048706 gives the corresponding "XOR-conjugate" rules.
Cf. A038183, A038184, A048709 (for specific examples). See also A048708, A048720.

Programs

  • Maple
    # The definitions of bit_i and floor_log_2 are given in A048700
    rule90 := proc(seed,n) option remember: local sl, i: if (0 = n) then (seed) else sl := floor_log_2(seed+1); add(((bit_i(rule90(seed,n-1),i)+bit_i(rule90(seed,n-1),i-2)) mod 2)*(2^i), i=0..(2*n)+sl) fi: end:
    rule150 := proc(seed,n) option remember: local sl, i: if (0 = n) then (seed) else sl := floor_log_2(seed+1);
    add(((bit_i(rule150(seed,n-1),i)+bit_i(rule150(seed,n-1),i-1)+bit_i(rule150(seed,n-1),i-2)) mod 2)*(2^i), i=0..((2*n)+sl)) fi: end:
    # Rule 90 and Rule 150 are commutative in respect to each other:
    rule90x150combination := proc(n) local p,q,i; p := extended_A020652[ n ]; # the Rule 150 component [ 0,1,op(A020652) ]
    q := extended_A020653[ n ]; # the Rule 90 component [ 1,0,op(A020653) ]
    RETURN(sum('bit_i(rule150(rule90(i,q),p),(2*(p+q))) * (2^i)','i'=0..(2^((2*(p+q))+1))-1));
    end:

Formula

a(n) = rule90x150combination(n) # See the Maple procedures below.

A352911 Cantor's List: Pairs (i, j) of relatively prime positive integers sorted first by i + j then by i.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 4, 2, 3, 3, 2, 4, 1, 1, 5, 5, 1, 1, 6, 2, 5, 3, 4, 4, 3, 5, 2, 6, 1, 1, 7, 3, 5, 5, 3, 7, 1, 1, 8, 2, 7, 4, 5, 5, 4, 7, 2, 8, 1, 1, 9, 3, 7, 7, 3, 9, 1, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 1, 11, 5, 7, 7, 5, 11, 1
Offset: 1

Views

Author

N. J. A. Sloane, Apr 09 2022

Keywords

Comments

a(2*n-1) / a(2*n) is the n-th fraction in Cantor's enumeration of the positive rational numbers. - Peter Luschny, Oct 10 2023

Examples

			The first few pairs are, seen as an irregular triangle:
  [1, 1],
  [1, 2], [2, 1],
  [1, 3], [3, 1],
  [1, 4], [2, 3], [3, 2], [4, 1],
  [1, 5], [5, 1],
  [1, 6], [2, 5], [3, 4], [4, 3], [5, 2], [6, 1],
  [1, 7], [3, 5], [5, 3], [7, 1],
  [1, 8], [2, 7], [4, 5], [5, 4], [7, 2], [8, 1],
  [1, 9], [3, 7], [7, 3], [9, 1],
  ...
		

Crossrefs

Cf. A352909, A020652 or A038566 (i-coordinates), A020653 (j-coordinates), A366191.

Programs

  • Maple
    CantorsList := proc(upto) local C, F, n, t, count;
    C := NULL; count := 0:
    for n from 2 while count < upto do
        F := select(t -> igcd(t, n-t) = 1, [$1..n-1]);
        C := C, seq([t, n - t], t = F);
        count := count + nops(F) od:
    ListTools:-Flatten([C]) end:
    CantorsList(40);  # Peter Luschny, Oct 10 2023
  • Mathematica
    A352911row[n_]:=Select[Array[{#,n-#}&,n-1],CoprimeQ[First[#],Last[#]]&];
    Array[A352911row,10,2] (* Generates 10 rows *) (* Paolo Xausa, Oct 10 2023 *)
  • Python
    from math import gcd
    from itertools import chain, count, islice
    def A352911_gen(): # generator of terms
        return chain.from_iterable((i,n-i) for n in count(2) for i in range(1,n) if gcd(i,n-i)==1)
    A352911_list = list(islice(A352911_gen(),30)) # Chai Wah Wu, Oct 10 2023

A157807 Numerators of fractions arranged in "antidiagonal boustrophedon" ordering with equivalent fractions removed: (1/1, 2/1, 1/2, 1/3, 3/1, 4/1, 3/2, 2/3, 1/4, 1/5, 5/1, 6/1, 5/2, ...).

Original entry on oeis.org

1, 2, 1, 1, 3, 4, 3, 2, 1, 1, 5, 6, 5, 4, 3, 2, 1, 1, 3, 5, 7, 8, 7, 5, 4, 2, 1, 1, 3, 7, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 5, 7, 11, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 3, 5, 9, 11, 13, 14, 13, 11, 8, 7, 4, 2, 1, 1, 3, 5, 7, 9, 11, 13, 15, 16, 15, 14
Offset: 1

Views

Author

Ron R. King, Mar 07 2009

Keywords

Crossrefs

Cf. A157813 (denominators), A038566.
With Cantor's ordering: A020652, A020653, A352911.

Programs

  • Maple
    R:= NULL: count:= 0:
    for m from 2 while count < 100 do
      S:= select(t -> igcd(t,m-t)=1, [$1..m-1]);
      count:= count+nops(S);
      if m::even then R:= R, op(S) else R:= R, seq(m-t,t=S) fi;
    od:
    R; # Robert Israel, Oct 09 2023
  • Python
    from math import gcd
    for s in range(2, 100, 2):
      for i in range(1, s):
        if gcd(i, s - i) != 1: continue
        print(i)
      for i in range(s, 0, -1):
        if gcd(i, s + 1 - i) != 1: continue
        print(i)
    # Hiroaki Yamanouchi, Oct 06 2014

Extensions

A-number in cross-reference corrected by R. J. Mathar, Sep 23 2009
a(19)-a(20) corrected and a(58)-a(82) added by Hiroaki Yamanouchi, Oct 06 2014
Name corrected by Andrey Zabolotskiy, Oct 10 2023

A157813 Denominators of fractions arranged in "antidiagonal boustrophedon" ordering with equivalent fractions removed: (1/1, 2/1, 1/2, 1/3, 3/1, 4/1, 3/2, 2/3, 1/4, 1/5, 5/1, 6/1, 5/2, ...).

Original entry on oeis.org

1, 1, 2, 3, 1, 1, 2, 3, 4, 5, 1, 1, 2, 3, 4, 5, 6, 7, 5, 3, 1, 1, 2, 4, 5, 7, 8, 9, 7, 3, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 7, 5, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 11, 9, 5, 3, 1, 1, 2, 4, 7, 8, 11, 13, 14, 15, 13, 11, 9, 7, 5, 3, 1, 1, 2, 3, 4
Offset: 1

Views

Author

Ron R. King, Mar 07 2009

Keywords

Crossrefs

Cf. A157807 (numerators), A038567.
With Cantor's ordering: A020652, A020653, A352911.

Programs

  • Maple
    R:= NULL: count:= 0:
    for m from 2 while count < 100 do
      S:= select(t -> igcd(t,m-t)=1, [$1..m-1]);
      count:= count+nops(S);
      if m::odd then R:= R, op(S) else R:= R, seq(m-t,t=S) fi;
    od:
    R; # Robert Israel, Oct 09 2023
  • Python
    from math import gcd
    for s in range(2, 100, 2):
      for i in range(1, s):
        if gcd(i, s - i) != 1: continue
        print(s - i)
      for i in range(s, 0, -1):
        if gcd(i, s + 1 - i) != 1: continue
        print(s + 1 - i)
    # Hiroaki Yamanouchi, Oct 06 2014

Extensions

a(58)-a(83) from Hiroaki Yamanouchi, Oct 06 2014
Name corrected by Andrey Zabolotskiy, Oct 10 2023

A037161 Well-order the rational numbers; take numerators.

Original entry on oeis.org

0, -1, 1, -2, -1, 1, 2, -3, -1, 1, 3, -4, -3, -2, -1, 1, 2, 3, 4, -5, -1, 1, 5, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, -7, -5, -3, -1, 1, 3, 5, 7, -8, -7, -5, -4, -2, -1, 1, 2, 4, 5, 7, 8, -9, -7, -3, -1, 1, 3, 7, 9, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1
Offset: 0

Views

Author

Keywords

References

  • W. Sierpiński, Cardinal and Ordinal Numbers, Warsaw 1965, 2nd ed., p. 40.

Crossrefs

Cf. A037162.
Cf. A020652.

Programs

  • Haskell
    import Data.List (transpose)
    import Data.Ratio ((%), numerator)
    a037161 n = a037161_list !! n
    a037161_list = 0 : map numerator
      (concat $ concat $ transpose [map (map negate) qss, map reverse qss])
      where qss = map q [1..]
            q x = map (uncurry (%)) $ filter ((== 1) . uncurry gcd) $
                      zip (reverse zs) zs where zs = [1..x]
    -- Reinhard Zumkeller, Mar 08 2013
  • Mathematica
    order[n_] := Join[-Reverse[ pos = Select[(r = Range[n])/Reverse[r], Numerator[#] + Denominator[#] == n + 1 & ] ], pos]; order[0] = 0; Numerator[ Flatten[ Table[ order[n], {n, 0, 10}]]] (* Jean-François Alcover, Jun 27 2012 *)
Previous Showing 11-20 of 32 results. Next