cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A081859 Short leg of primitive Pythagorean triangles sorted on semiperimeter.

Original entry on oeis.org

3, 5, 8, 7, 20, 12, 9, 28, 11, 16, 33, 48, 13, 36, 39, 20, 65, 15, 60, 44, 17, 24, 88, 51, 85, 19, 52, 119, 57, 28, 104, 95, 21, 84, 133, 60, 140, 32, 105, 23, 120, 69, 96, 115, 68, 25, 160, 36, 161, 75, 136, 207, 27, 204, 76, 175, 180, 40, 225, 135, 29, 152, 252, 189, 120
Offset: 1

Views

Author

Lekraj Beedassy, Apr 23 2003

Keywords

Crossrefs

Extensions

More terms from Ray Chandler, Oct 28 2003

A120210 Integer squares y from the smallest solutions of y^2 = x*(a^N - x)*(b^N + x) (elliptic line, Weierstrass equation) with a and b legs in primitive Pythagorean triangles and N = 2. Sequence ordered in increasing values of leg a.

Original entry on oeis.org

20, 30, 156, 600, 420, 1640, 3660, 520, 2590, 7140, 1224, 10920, 8190, 20880, 32580, 4872, 19998, 5220, 48620, 69960, 3150, 41470, 97656, 132860, 19080, 76830, 176820, 230880, 131070, 12740, 296480, 11100, 375156, 52360, 209950, 468540, 64080
Offset: 1

Views

Author

Keywords

Comments

The case x congruent to 0 mod b or b congruent to 0 mod x is frequent (e.g., A120212). Note that the triples a = 3, b = 4, c = 5 and a = 4, b = 3, c = 5 provide a different result for (x, y).
The natural solution is y = c * b * (c-b) and x = b * (c-b) with c hypotenuse in the triple. - Giorgio Balzarotti, Jul 19 2006

Examples

			First primitive Pythagorean triple: 3, 4, 5.
Weierstrass equation: y^2 = x*(3^2 - x)*(4^2 + x).
Smallest integer solution: (x, y) = (4,20).
First element in the sequence: y = 20.
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 47.

Crossrefs

Programs

  • Maple
    flag:=1; x:=0; # a, b, c primitive Pythagorean triple
    while flag=1 do x:=x+1; y2:=x*(a^2-x)*(x+b^2); if (floor(sqrt(y2)))^2=y2 then print(sqrt(y2)); flag:=0; fi; od;

A155180 Short leg A of primitive Pythagorean triangles such that perimeters and products of 3 sides are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes, pr=a*b*c, pr-+1 are primes.

Original entry on oeis.org

3, 15833, 71765, 75633, 94983, 256859, 263661, 292943, 309599, 315159, 340439, 349929, 375089, 415659, 416079, 445775, 446285, 525005, 583089, 639651, 655205, 663255, 707715, 953363, 955319, 988415, 1044051, 1074909, 1081365, 1116323
Offset: 1

Views

Author

Keywords

Comments

p=1,q=2,a=3,b=4,c=5,s=12-+1 primes,pr=3*4*5=60-+1 primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;pr=a*b*c;If[PrimeQ[s-1]&&PrimeQ[s+1]&&PrimeQ[pr-1]&&PrimeQ[pr+1],AppendTo[lst,a]],{n,3*9!}];lst

A376428 Numbers k that occur as shorter legs of Pythagorean triangles with Pythagorean primes A002144 as hypotenuses.

Original entry on oeis.org

3, 5, 8, 9, 11, 12, 15, 19, 20, 25, 28, 29, 32, 35, 39, 40, 45, 48, 49, 51, 52, 59, 60, 61, 65, 68, 69, 71, 72, 75, 79, 80, 85, 88, 95, 101, 105, 108, 112, 115, 120, 121, 129, 131, 132, 139, 140, 141, 145, 148, 159, 160, 165, 168, 169, 171, 175, 180, 181, 188, 189
Offset: 1

Views

Author

Hugo Pfoertner, Sep 22 2024

Keywords

Comments

Distinct sorted terms of A002366.

Crossrefs

Subsequence of A020884.

A155185 Primes in A155175.

Original entry on oeis.org

5, 13, 113, 1741, 5101, 8581, 9941, 21841, 26681, 47741, 82013, 481181, 501001, 1009621, 2356621, 2542513, 3279361, 3723721, 4277813, 7757861, 8124481, 13204661, 25311613, 30772013, 44170601, 48619661, 51521401, 52541501, 54236113, 60731221, 72902813
Offset: 1

Views

Author

Keywords

Comments

Hypotenuse C (prime numbers only) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes. p=1,q=2,a=3,b=4,c=5=prime,s=12-+1primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[c],AppendTo[lst,c]]],{n,8!}];lst (* corrected by Ray Chandler, Feb 11 2020 *)

Extensions

Sequence corrected by Ray Chandler, Feb 11 2020

A165260 Short legs of primitive Pythagorean triples which have a perimeter which is the average of a twin prime pair.

Original entry on oeis.org

3, 5, 15, 21, 24, 28, 36, 41, 59, 64, 89, 100, 101, 120, 131, 132, 141, 153, 155, 168, 180, 203, 204, 208, 209, 215, 220, 231, 244, 280, 288, 300, 309, 315, 336, 341, 348, 351, 395, 405, 408, 429, 448, 453, 455, 495, 520, 540, 551, 567, 568, 580, 592, 636, 648
Offset: 1

Views

Author

Keywords

Examples

			Triples (a,b,c) which satisfy the rules are (3,4,5), (5,12,13), (15,112,113), (21,220,221), (24,143,145), (28,195,197), (36,77,85), (41,840,841), (59,1740,1741), (64,1023,1025), (89,3960,3961), (100,2499,2501), ... 3+4+5=12 -> 11 and 13 are primes, 5+12+13=30 -> 29 and 31 are primes, ...
		

Crossrefs

Programs

  • Maple
    isA014574 := proc(n)
            return ( isprime(n-1) and isprime(n+1) ) ;
    end proc:
    isA165260 := proc(n)
            local d,bplc,b,c ;
            for d in numtheory[divisors](n^2) do
                    bplc := n^2/d ;
                    c := (d+bplc)/2 ;
                    b := (bplc-d)/2 ;
                    if type(c,'integer') and type(b,'integer') then
                    if c > b and b >= n then
                            if igcd(n,b,c) = 1 and  isA014574(n+b+c) then
                                    return true;
                            end if;
                    end if;
                    end if;
            end do:
            return false;
    end proc:
    for n from 3 to 600 do
            if isA165260(n) then
                    printf("%d,",n);
            end if;
    end do: # R. J. Mathar, Oct 29 2011
  • Mathematica
    amax=10^4;lst={};k=0;q=12!;Do[If[(e=((n+1)^2-n^2))>amax,Break[]];Do[If[GCD[m,n]==1,a=m^2-n^2;b=2*m*n;If[GCD[a,b]==1,If[a>b,{a,b}={b,a}];If[a>amax,Break[]];c=m^2+n^2;x=a+b+c;If[PrimeQ[x-1]&&PrimeQ[x+1],k++;AppendTo[lst,a]]]],{m,n+1,12!,2}],{n,1,q,1}];Union@lst

A239581 Number of primitive Pythagorean triangles (x, y, z) with legs x < y < 10^n.

Original entry on oeis.org

1, 18, 179, 1788, 17861, 178600, 1786011, 17860355, 178603639, 1786036410, 17860362941
Offset: 1

Views

Author

Martin Renner, Mar 26 2014

Keywords

Comments

A Pythagorean triangle is a right triangle with integer side lengths x, y, z forming a Pythagorean triple (x, y, z). It is called primitive, if gcd(x, y, z) = 1.
Because (x, y, z) is equivalent to (y, x, z), the total number of primitive Pythagorean triangles with legs x, y < 10^n is b(n) = 2*a(n) = 2, 36, 358, 3576, 35722, ...

Examples

			a(1) = 1, because the only primitive Pythagorean triangle with x < y < 10 is [3, 4, 5].
		

Crossrefs

Extensions

a(6)-a(11) from Giovanni Resta, Mar 27 2014

A239744 Number of Pythagorean triangles (x, y, z) with legs x < y <= 10^n.

Original entry on oeis.org

2, 63, 1034, 14474, 185864, 2269788, 26809924, 309224756, 3503496007, 39147452729, 432599522197
Offset: 1

Views

Author

Martin Renner, Mar 26 2014

Keywords

Comments

A Pythagorean triangle is a right triangle with integer side lengths x, y, z forming a Pythagorean triple (x, y, z).
Because (x, y, z) is equivalent to (y, x, z), the total number of Pythagorean triangles with legs x, y < 10^n is b(n) = 2*a(n) = 4, 126, 2068, 28948, 371728, ...

Examples

			a(1) = 2, because the only two Pythagorean triangles with x < y < 10 are [3, 4, 5] and [6, 8, 10].
		

Crossrefs

Extensions

a(6)-a(11) from Giovanni Resta, Mar 27 2014

A239786 Number of Pythagorean triangles (x, y, z) with legs x < y < 10^n.

Original entry on oeis.org

2, 62, 1032, 14471, 185860, 2269783, 26809918, 309224749, 3503495999, 39147452720, 432599522187
Offset: 1

Views

Author

Martin Renner, Mar 26 2014

Keywords

Comments

A Pythagorean triangle is a right triangle with integer side length x, y, z forming a Pythagorean triple (x, y, z).
Because (x, y, z) is equivalent to (y, x, z), the total number of Pythagorean triangles with legs x, y < 10^n is b(n) = 2*a(n) = 4, 124, 2064, 28942, ...

Crossrefs

Extensions

a(5)-a(11) from Giovanni Resta, Mar 27 2014

A138043 Concatenation of primitive Pythagorean triangles, sorted.

Original entry on oeis.org

345, 51213, 72425, 81517, 94041, 116061, 123537, 166365, 202129, 284553, 335665, 367785, 398089, 485573, 657297, 2099101, 6091109, 15112113, 17144145, 19180181, 21220221, 23264265, 24143145, 25312313, 28195197, 29420421, 31480481
Offset: 1

Views

Author

Lekraj Beedassy, Mar 02 2008

Keywords

Crossrefs

Cf. A020884.
Previous Showing 31-40 of 44 results. Next