cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 70 results. Next

A257377 Numbers n such that n, n+2, n+6, n+12, n+14, n+20, n+24, n+26, n+30, n+36, n+42, n+44, n+50, n+54, n+56, n+62 and n+66 are all prime.

Original entry on oeis.org

17, 37630850994954402655487, 53947453971035573715707, 174856263959258260646207, 176964638100452596444067, 207068890313310815346497, 247620555224812786876877, 322237784423505559739147
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Apr 21 2015

Keywords

Crossrefs

Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime 5-tuples: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: A257124 out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: A257125 out of A022547, A022548, A022545, A022546.
prime decaplets: A257127 out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: A257131 out of A213601, A213645.
prime 13-tuplets: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, A257168.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, this sequence.

A052378 Primes followed by a [4,2,4] prime difference pattern of A001223.

Original entry on oeis.org

7, 13, 37, 97, 103, 223, 307, 457, 853, 877, 1087, 1297, 1423, 1483, 1867, 1993, 2683, 3457, 4513, 4783, 5227, 5647, 6823, 7873, 8287, 10453, 13687, 13873, 15727, 16057, 16063, 16183, 17383, 19417, 19423, 20743, 21013, 21313, 22273, 23053, 23557
Offset: 1

Views

Author

Labos Elemer, Mar 22 2000

Keywords

Comments

The sequence includes A052166, A052168, A022008 and also other primes like 13, 103, 16063 etc.
a(n) is the lesser term of a 4-twin (A023200) after which the next 4-twin comes in minimal distance [here it is 2; see A052380(4/2)].
Analogous prime sequences are A047948, A052376, A052377 and A052188-A052198 with various [d, A052380(d/2), d] difference patterns following a(n).
All terms == 1 (mod 6) - Zak Seidov, Aug 27 2012
Subsequence of A022005. - R. J. Mathar, May 06 2017

Examples

			103 initiates [103,107,109,113] prime quadruple followed by [4,2,4] difference pattern.
		

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Prime[x + 3] - Prime[x] == 10, AppendTo[a, Prime[x]]], {x, 1, 10000}]; a (* Zerinvary Lajos, Apr 03 2007 *)
    Select[Partition[Prime[Range[3000]],4,1],Differences[#]=={4,2,4}&][[All,1]] (* Harvey P. Dale, Jun 16 2017 *)
  • PARI
    is(n)=n%6==1 && isprime(n+4) && isprime(n+6) && isprime(n+10) && isprime(n) \\ Charles R Greathouse IV, Apr 29 2015

Formula

a(n) is the initial prime of a [p, p+4, p+6, p+6+4] prime-quadruple consisting of two 4-twins: [p, p+4] and [p+6, p+10].

A052168 Primes at which difference pattern X4242Y (X and Y >= 6) occurs in A001223.

Original entry on oeis.org

1867, 3457, 5647, 15727, 79687, 88807, 101107, 257857, 266677, 276037, 284737, 340927, 354247, 375247, 402757, 419047, 427237, 463447, 470077, 626617, 666427, 736357, 823717, 855727, 959467, 978067, 1022377, 1043587, 1068247, 1118857
Offset: 1

Views

Author

Labos Elemer, Jan 26 2000

Keywords

Comments

All terms are == 7 (mod 30). - Zak Seidov, May 07 2017

Examples

			1867 is here because the successor primes (1867),1871,1873,1877,1879 give 4242 difference pattern. The primes around this island are 1861 and 1889 in distance 6 and 10 resp. Thus the d-pattern "around 1867" is {6,4,2,4,2,10}. [corrected by _Zak Seidov_, May 07 2017]
		

Crossrefs

Programs

  • Mathematica
    m=1867; Reap[Do[While[ PrimeQ[m] m = m + 30]; If[
    m > NextPrime[m, -1] + 5 &&  AllTrue[m + {4, 6, 10, 12}, PrimeQ] && NextPrime[m + 12] > m + 17, Sow[m]]; m = m + 30, {10^5}]][[2, 1]] (* Zak Seidov, May 07 2017 *)

A052162 Primes at which difference pattern X4Y (X and Y >= 6) occurs in A001223.

Original entry on oeis.org

79, 127, 163, 379, 397, 439, 487, 499, 673, 739, 757, 769, 907, 937, 967, 1009, 1213, 1549, 1567, 1579, 1597, 2203, 2293, 2347, 2389, 2437, 2473, 2539, 2617, 2749, 2833, 2857, 2953, 3019, 3037, 3079, 3187, 3217, 3319, 3343, 3613, 3697, 3793, 3877, 3907
Offset: 1

Views

Author

Labos Elemer, Jan 26 2000

Keywords

Examples

			127 is in the sequence because 127 + 4 = 131 is prime, but the difference pattern around 127 is {[113] 14 [127] 4 [131] 6 [137]}.
		

Crossrefs

Programs

  • Mathematica
    s = Differences@ Prime@ Range[600]; Prime@ Select[Position[s, 4][[All, 1]], And[s[[# - 1]] >= 6, s[[# + 1]] >= 6] &] (* Michael De Vlieger, Aug 17 2023 *)

A200503 Record (maximal) gaps between prime sextuplets (p, p+4, p+6, p+10, p+12, p+16).

Original entry on oeis.org

90, 15960, 24360, 1047480, 2605680, 2856000, 3605070, 4438560, 5268900, 17958150, 21955290, 23910600, 37284660, 40198200, 62438460, 64094520, 66134250, 70590030, 77649390, 83360970, 90070470, 93143820, 98228130, 117164040, 131312160, 151078830, 154904820
Offset: 1

Views

Author

Alexei Kourbatov, Nov 18 2011

Keywords

Comments

Prime sextuplets (p, p+4, p+6, p+10, p+12, p+16) are densest permissible constellations of 6 primes. Average gaps between sextuplets (and, more generally, between prime k-tuples) can be deduced from the Hardy-Littlewood k-tuple conjecture and are O(log^6(p)). Maximal gaps may be significantly larger than average gaps; this sequence suggests that maximal gaps are O(log^7(p)).
A200504 lists initial primes in sextuplets preceding the maximal gaps. A233426 lists the corresponding primes at the end of the maximal gaps.

Examples

			The gap of 15960 between sextuplets with initial primes 97 and 16057 is a maximal gap - larger than any preceding gap; therefore a(2)=15960.
		

Crossrefs

Programs

  • Mathematica
    DeleteDuplicates[Differences[Select[Partition[Prime[Range[10^7]],6,1],Differences[#]=={4,2,4,2,4}&][[;;,1]]],GreaterEqual] (* The program generates the first 10 terms of the sequence. *) (* Harvey P. Dale, May 08 2025 *)

Formula

(1) Conjectured upper bound: gaps between prime sextuplets (p, p+4, p+6, p+10, p+12, p+16) are smaller than 0.058*(log p)^7, where p is the prime at the end of the gap.
(2) Estimate for the actual size of the maximal gap that ends at p: maximal gap = a(log(p/a)-1/3), where a = 0.058*(log p)^6 is the average gap between sextuplets near p, as predicted by the Hardy-Littlewood k-tuple conjecture.
Formulas (1) and (2) are asymptotically equal as p tends to infinity. However, (1) yields values greater than all known gaps, while (2) yields "good guesses" that may be either above or below the actual size of maximal gaps. Both formulas (1) and (2) are derived from the Hardy-Littlewood k-tuple conjecture via probability-based heuristics relating the expected maximal gap size to the average gap. Neither of the formulas has a rigorous proof (the k-tuple conjecture itself has no formal proof either). In both formulas, the constant ~0.058 is reciprocal to the Hardy-Littlewood 6-tuple constant 17.2986...

A052165 Primes at which the difference pattern X,2,4,2,Y (X and Y >= 6) occurs in A001223.

Original entry on oeis.org

191, 821, 2081, 3251, 9431, 13001, 15641, 18041, 18911, 25301, 31721, 34841, 51341, 62981, 67211, 69491, 72221, 77261, 81041, 82721, 97841, 99131, 109841, 116531, 119291, 122201, 135461, 157271, 171161, 187631, 194861, 201491, 217361
Offset: 1

Views

Author

Labos Elemer, Jan 26 2000

Keywords

Comments

All terms == 11 (mod 30). - Robert Israel, Nov 30 2015

Examples

			191 is here because 191 + 2 = 193, 191 + 4 + 2 = 197, 191 + 2 + 4 + 2 = 199 are primes; the prime preceding 191 is 181; the prime following 199 is 211; and the corresponding differences are 10 and 12. Thus the d-pattern "around 191" is {10,2,4,2,12}.
		

Crossrefs

Programs

  • Maple
    Primes:= select(isprime,[2,seq(i,i=3..10^6,2)]):
    Gaps:= Primes[2..-1]-Primes[1..-2]:
    Primes[select(t -> Gaps[t] = 2 and Gaps[t+1] = 4 and Gaps[t+2] = 2 and Gaps[t-1] >= 6 and Gaps[t+3]>=6, [$2..nops(Gaps)-3])]; # Robert Israel, Nov 30 2015
  • Mathematica
    With[{x = 6, y = 6, s = Partition[#, 6, 1] &@ Prime@ Range[3*10^4]}, Select[s, And[First@ # >= x, Last@ # >= y, Most@ Rest@ # == {2, 4, 2}] &@ Differences@ # &]][[All, 2]] (* Michael De Vlieger, Oct 26 2017 *)

A047078 Primes at which difference pattern X2Y (X and Y >= 6) occurs in A001223.

Original entry on oeis.org

29, 59, 137, 149, 179, 239, 269, 419, 431, 521, 569, 599, 659, 809, 1019, 1031, 1049, 1061, 1151, 1229, 1289, 1319, 1619, 1721, 1931, 1949, 2027, 2111, 2129, 2309, 2339, 2549, 2591, 2729, 2789, 2969, 2999, 3119, 3299, 3329, 3359, 3371, 3389, 3539, 3557
Offset: 1

Views

Author

Labos Elemer, Jan 26 2000

Keywords

Examples

			59 is here because 59 + 2 = 61 is prime, but the difference pattern around 59 is {[53] 6 [59] 2 [61] 6 [67]}.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range[2, 500], Times @@ Boole@ {First@ # >= 6, #[[2]] == 2, Last@ # >= 6} == 1 &@ Differences@ Prime[# + Range[-1, 2]] &@ PrimePi@ # &] (* Michael De Vlieger, Jul 04 2016 *)

A052163 Primes at which the difference pattern X24Y (X and Y >= 6) occurs in A001223.

Original entry on oeis.org

347, 641, 1277, 1607, 2237, 2267, 2657, 3527, 3671, 3917, 4001, 4127, 4637, 4931, 4967, 5477, 5501, 6197, 8087, 8231, 8537, 8861, 9461, 10331, 10427, 11171, 11777, 12107, 12917, 13757, 13901, 14081, 14321, 14627, 17027, 18251, 19991, 20477
Offset: 1

Views

Author

Labos Elemer, Jan 26 2000

Keywords

Examples

			641 is in the sequence because 641 + 2 = 643, 641 + 2 + 4 = 647 is prime, the prime prior to 641 is 631, the prime after 647 is 653, and the corresponding differences are 10 or 6. The d-pattern is {10,2,4,6}.
		

Crossrefs

A052166 Primes at which the difference pattern X424Y (X and Y >= 6) occurs in A001223.

Original entry on oeis.org

37, 223, 307, 457, 853, 877, 1087, 1297, 1423, 1993, 2683, 4513, 4783, 5227, 6823, 7873, 8287, 10453, 13687, 13873, 16183, 17383, 20743, 21313, 23053, 23557, 23623, 24103, 27733, 29017, 31387, 33343, 33613, 35527, 36007, 37987, 40423, 42013
Offset: 1

Views

Author

Labos Elemer, Jan 26 2000

Keywords

Examples

			37 is here because 37 + 4 = 41, 37 + 4 + 2 = 43, 37 + 4 + 2 + 4 = 47 are consecutive primes and the prime preceding 37 is 31, the prime following 47 is 53, and the corresponding differences are 6 and 6. Thus the d-pattern "around 37" is {6,4,2,4}.
		

Crossrefs

Programs

  • Mathematica
    okQ[n_List]:=Module[{d=Differences[n]},Take[d,{2,4}]=={4,2,4} && First[d]>5&&Last[d]>5]; Transpose[Select[ Partition[ Prime[ Range[ 4400]], 6, 1],okQ]][[2]] (* Harvey P. Dale, Jul 17 2011 *)

A052167 Primes at which difference pattern X2424Y (X and Y >= 6) occurs in A001223.

Original entry on oeis.org

1481, 21011, 22271, 55331, 144161, 165701, 166841, 195731, 201821, 225341, 247601, 268811, 326141, 347981, 361211, 397751, 465161, 518801, 536441, 633461, 633791, 661091, 768191, 795791, 829721, 857951, 876011, 958541, 1008851
Offset: 1

Views

Author

Labos Elemer, Jan 26 2000

Keywords

Examples

			21011 is here because 21011+{2,2+4,2+4+2,2+4+2+4}=21011+{1,6,8,12}= {21013,21013,21017,21019,21023} are consecutive primes but the primes in the immediate neighborhood (21001 and 21031) are in distance 10 and 8. Thus the d-pattern "around 21011" is {10,2,4,2,4,12}.
		

Crossrefs

Programs

  • Mathematica
    patQ[n_]:=Module[{d=Differences[n]},First[d]>5&&Last[d]>5&&Most[ Rest[d]] == {2,4,2,4}]; Transpose[Select[Partition[Prime[ Range[ 80000]],7,1],patQ]] [[2]] (* Harvey P. Dale, Dec 11 2013 *)
Previous Showing 31-40 of 70 results. Next