A355282
Triangle read by rows: T(n, k) = Sum_{i=1..n-k} qStirling1(n-k, i) * qStirling2(n-1+i, n-1) for 0 < k < n with initial values T(n, 0) = 0^n and T(n, n) = 1 for n >= 0, here q = 2.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 9, 4, 1, 0, 343, 79, 11, 1, 0, 50625, 6028, 454, 26, 1, 0, 28629151, 1741861, 68710, 2190, 57, 1, 0, 62523502209, 1926124954, 38986831, 656500, 9687, 120, 1, 0, 532875860165503, 8264638742599, 84816722571, 734873171, 5760757, 40929, 247, 1
Offset: 0
Triangle T(n, k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8
===============================================================================
0 : 1
1 : 0 1
2 : 0 1 1
3 : 0 9 4 1
4 : 0 343 79 11 1
5 : 0 50625 6028 454 26 1
6 : 0 28629151 1741861 68710 2190 57 1
7 : 0 62523502209 1926124954 38986831 656500 9687 120 1
8 : 0 532875860165503 8264638742599 84816722571 734873171 5760757 40929 247 1
etc.
-
# using qStirling2 from A333143.
A355282 := proc(n, k) if k = 0 then 0^n elif n = k then 1 else
add(A342186(n - k, i)*qStirling2(n + i - 2, n - 2, 2), i = 1..n-k) fi end:
seq(print(seq(A355282(n, k), k = 0..n)), n = 0..8); # Peter Luschny, Jun 28 2022
-
mat(nn) = my(m = matrix(nn, nn)); for (n=1, nn, for(k=1, nn, m[n, k] = if (n==1, if (k==1, 1, 0), if (k==1, 1, (2^k-1)*m[n-1, k] + m[n-1, k-1])); ); ); m; \\ A139382
tabl(nn) = my(m=mat(3*nn), im=1/m); matrix(nn, nn, n, k, n--; k--; if (k==0, 0^n, kMichel Marcus, Jun 27 2022
A359313
Triangular array read by rows. T(n,k) is the number of Green's H-classes contained in the D-class of rank k matrices in the semigroup Mat_n(F_2) of n X n matrices over the field F_2. n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 9, 1, 1, 49, 49, 1, 1, 225, 1225, 225, 1, 1, 961, 24025, 24025, 961, 1, 1, 3969, 423801, 1946025, 423801, 3969, 1, 1, 16129, 7112889, 139499721, 139499721, 7112889, 16129, 1, 1, 65025, 116532025, 9439094025, 40315419369, 9439094025, 116532025, 65025, 1
Offset: 0
1
1, 1
1, 9, 1
1, 49, 49, 1
1, 225, 1225, 225, 1
1, 961, 24025, 24025, 961, 1
- R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, section 3.18.
-
nn = 8; B[n_, q_] := QFactorial[n, q]^2; e[x_] := Sum[x^n/B[n, 2], {n, 0, nn}]; Map[Select[#, # > 0 &] &, Table[QFactorial[n, 2]^2, {n, 0, nn}] CoefficientList[
Series[e[x] e[y x], {x, 0, nn}], {x, y}]]
A372230
Triangular array read by rows. T(n,k) is the number of size k circuits in the linear matroid M[A] where A is the n X 2^n-1 matrix whose columns are the nonzero vectors in GF(2)^n, n>=2, 3<=k<=n+1.
Original entry on oeis.org
1, 7, 7, 35, 105, 168, 155, 1085, 5208, 13888, 651, 9765, 109368, 874944, 3999744, 2667, 82677, 1984248, 37039296, 507967488, 4063739904, 10795, 680085, 33732216, 1349288640, 43177236480, 1036253675520, 14737830051840
Offset: 2
Triangle begins ...
1;
7, 7;
35, 105, 168;
155, 1085, 5208, 13888;
651, 9765, 109368, 874944, 3999744;
2667, 82677, 1984248, 37039296, 507967488, 4063739904;
...
- J. Oxley, Matroid Theory, Oxford Graduate Texts in Mathematics, 1992, page 8.
-
nn = 8; Map[Select[#, # > 0 &] &, Table[Table[PadRight[Table[Product[(2^n - 2^i)/(2^k - 2^i), {i, 0, k - 1}], {k, 2, n}], nn], {n, 2, nn}][[All, j]]* Table[Product[2^n - 2^i, {i, 0, n - 1}]/(n + 1)!, {n, 2, nn}][[j]], {j, 1, nn - 1}] // Transpose] // Grid
A385434
Triangle of Gaussian binomial coefficients (or q-binomial coefficients) [n,k] for q = 2, reduced mod 3.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1
Offset: 0
Triangle begins:
[ 0] [1]
[ 1] [1, 1]
[ 2] [1, 0, 1]
[ 3] [1, 1, 1, 1]
[ 4] [1, 0, 2, 0, 1]
[ 5] [1, 1, 2, 2, 1, 1]
[ 6] [1, 0, 0, 0, 0, 0, 1]
[ 7] [1, 1, 0, 0, 0, 0, 1, 1]
[ 8] [1, 0, 1, 0, 0, 0, 1, 0, 1]
[ 9] [1, 1, 1, 1, 0, 0, 1, 1, 1, 1]
[10] [1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1]
[11] [1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1]
-
Table[Mod[QBinomial[n, k, 2],3], {n, 0, 11}, {k, 0, n}] // Flatten (* James C. McMahon, Jun 29 2025 *)
-
def T(n, k): return mod(gaussian_binomial(n, k).subs(q=2), 3)
for n in range(12): print([T(n, k) for k in range(n+1)]) # Peter Luschny, Jun 29 2025
A124384
O.g.f.: A(x) = Sum_{n>=0} x^n*Product_{k=0..n} (1 + 2^k*x).
Original entry on oeis.org
1, 2, 4, 10, 30, 110, 494, 2734, 18734, 159278, 1685550, 22268974, 367653934, 7597868078, 196929315886, 6402998805550, 261393582040110, 13416320169124910, 865576139256079406, 70227589169019724846, 7172766017169503134766, 921829147482582383174702
Offset: 0
A(x) = (1+x) + x*(1+x)*(1+2x) + x^2*(1+x)*(1+2x)*(1+4x) + x^3*(1+x)*(1+2x)*(1+4x)*(1+8x) +...
-
a(n)=polcoeff(sum(k=0,n,x^k*prod(j=0,k,1+2^j*x+x*O(x^n))),n)
A276823
a(n) = 3 * [3*n]_2! / ([2*n+1]_2! * [n+1]_2!), where [n]_q! is the q-factorial.
Original entry on oeis.org
1, 9, 1241, 2634489, 87807053113, 46414431022602681, 390913823614809035461305, 52571422826552549403006580802745, 113007269646365312407427675894837602068665, 3884802624238339577626451297006421856376970743148729
Offset: 1
-
a:= n-> 3*mul((2^j-1), j=1..3*n)/
(mul((2^j-1), j=1..2*n+1)*
mul((2^j-1), j=1..n+1)):
seq(a(n), n=1..12); # Alois P. Heinz, Sep 20 2016
-
Table[3 QFactorial[3 n, 2]/(QFactorial[2 n + 1, 2] QFactorial[n + 1, 2]), {n, 10}] (* or *)
Table[3 QBinomial[3 n, 2 n + 1, 2]/(1 - 3 * 2^n + 2^(2 n + 1)), {n, 10}]
A277271
Second largest coefficient among the polynomials in row n of the triangle of q-binomial coefficients.
Original entry on oeis.org
1, 1, 2, 4, 7, 11, 19, 30, 55, 90, 166, 285, 519, 902, 1656, 2929, 5424, 9673, 18012, 32467, 60981, 110599, 208445, 381301, 722552, 1327869, 2522994, 4665786, 8902311, 16524759, 31594853, 58935171, 113038371, 211499060, 406350261, 763246536, 1470080699
Offset: 4
Row 5 of the triangle of q-binomial coefficients is [1, 1 + q + q^2 + q^3 + q^4, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + q^2 + q^3 + q^4, 1]. The largest coefficient is 2, and the second largest coefficient is 1. Hence A277218(5) = 2 and a(5) = 1.
-
Table[(Union @@ Table[CoefficientList[FunctionExpand[QBinomial[n, k, q]], q], {k, 0, n}])[[-2]], {n, 4, 40}]
A289383
Total number of nonzero vectors over all subspaces of an n-dimensional vector space over the field with two elements.
Original entry on oeis.org
0, 1, 6, 35, 240, 2077, 23562, 358775, 7449060, 213188689, 8473977534, 470309723435, 36582636406680, 3998655357260293, 615328930033081458, 133485330929459963615, 40859530900982506959180, 17659495180812130332490681, 10781678259164073608877557286, 9301770545157096607562560360595
Offset: 0
-
nn = 20; eq[z_] :=Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}] CoefficientList[Series[z eq[z]^2 /. q -> 2, {z, 0, nn}], z]
A329154
Coefficients of polynomials related to the sum of Gaussian binomial coefficients for q = 2. Triangle read by rows, T(n,k) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 26, 24, 12, 4, 1, 158, 130, 60, 20, 5, 1, 1330, 948, 390, 120, 30, 6, 1, 15414, 9310, 3318, 910, 210, 42, 7, 1, 245578, 123312, 37240, 8848, 1820, 336, 56, 8, 1, 5382862, 2210202, 554904, 111720, 19908, 3276, 504, 72, 9, 1
Offset: 0
Triangle starts:
[0] [1]
[1] [1, 1]
[2] [2, 2, 1]
[3] [6, 6, 3, 1]
[4] [26, 24, 12, 4, 1]
[5] [158, 130, 60, 20, 5, 1]
[6] [1330, 948, 390, 120, 30, 6, 1]
[7] [15414, 9310, 3318, 910, 210, 42, 7, 1]
[8] [245578, 123312, 37240, 8848, 1820, 336, 56, 8, 1]
[9] [5382862, 2210202, 554904, 111720, 19908, 3276, 504, 72, 9, 1]
-
T := (n, k) -> local j, m; pochhammer(n - k + 1, k)*add((-1)^j*add(product((2^(i + m) - 1)/(2^i - 1), i = 1..n-k-m-j), m = 0..n-k-j)*binomial(n - k, j), j = 0..n-k) / k!: for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, Oct 08 2023
-
T[n_,k_]:= (Pochhammer[n-k+1,k]/(k!)*Sum[(-1)^j*Sum[Product[(2^(i+m)-1)/(2^i-1),{i,1,n-k-m-j}],{m,0,n-k-j}]*Binomial[n-k,j],{j,0,n-k}]); Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Oct 07 2023 *)
-
R = PolynomialRing(QQ, 'x')
x = R.gen()
@cached_function
def P(n, k, x):
if k < 0 or n < 0: return R(0)
if k == 0: return R(1)
return x*P(n, k-1, x) + 2^k*P(n-1, k, (x+1)/2)
def row(n): return sum(P(n-k, k, x) for k in range(n+1)).coefficients()
print(flatten([row(n) for n in range(10)]))
A355401
Triangle read by rows: T(n, k) = Sum_{i=1..n-k} inverse-q-binomial(n-k-1, i-1) * q-binomial(n-2+i, n-2) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = 1 for n >= 0, here q = 2.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 4, 3, 1, 0, 64, 28, 7, 1, 0, 4096, 960, 140, 15, 1, 0, 1048576, 126976, 9920, 620, 31, 1, 0, 1073741824, 66060288, 2666496, 89280, 2604, 63, 1, 0, 4398046511104, 136365211648, 2796552192, 48377856, 755904, 10668, 127, 1
Offset: 0
Triangle T(n, k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8
==================================================================================
0 : 1
1 : 0 1
2 : 0 1 1
3 : 0 4 3 1
4 : 0 64 28 7 1
5 : 0 4096 960 140 15 1
6 : 0 1048576 126976 9920 620 31 1
7 : 0 1073741824 66060288 2666496 89280 2604 63 1
8 : 0 4398046511104 136365211648 2796552192 48377856 755904 10668 127 1
etc.
Matrix inverse R(n, k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7
===============================================================
0 : 1
1 : 0 1
2 : 0 -1 1
3 : 0 -1 -3 1
4 : 0 -29 -7 -7 1
5 : 0 -2561 -435 -35 -15 1
6 : 0 -814309 -79391 -4495 -155 -31 1
7 : 0 -944455609 -51301467 -1667211 -40455 -651 -63 1
etc.
Comments