cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A347970 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_3)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 8, 16, 8, 1, 1, 11, 39, 39, 11, 1, 1, 15, 87, 168, 87, 15, 1, 1, 19, 176, 644, 644, 176, 19, 1, 1, 24, 338, 2348, 4849, 2348, 338, 24, 1, 1, 29, 613, 8137, 37159, 37159, 8137, 613, 29, 1, 1, 35, 1071, 27047, 286747, 679054, 286747, 27047, 1071
Offset: 0

Views

Author

Álvar Ibeas, Sep 21 2021

Keywords

Comments

Columns can be computed by a method analogous to that of Fripertinger for isometry classes of linear codes, disallowing scalar transformation of individual coordinates.

Examples

			Triangle begins:
  k:  0   1   2   3   4   5   6   7
      -----------------------------
n=0:  1
n=1:  1   1
n=2:  1   3   1
n=3:  1   5   5   1
n=4:  1   8  16   8   1
n=5:  1  11  39  39  11   1
n=6:  1  15  87 168  87  15   1
n=7:  1  19 176 644 644 176  19   1
There are 4 = A022167(2, 1) one-dimensional subspaces in (F_3)^2, namely, those generated by (0, 1), (1, 0), (1, 1), and (1, 2). The first two are related by coordinate swap, while the remaining two are invariant. Hence, T(2, 1) = 3.
		

Crossrefs

Cf. A022167, A024206(n+1) (column k=1), A076831.

A378666 Triangular array read by rows: T(n,k) is the number of n X n idempotent matrices over GF(3) having rank k, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 117, 117, 1, 1, 1080, 10530, 1080, 1, 1, 9801, 882090, 882090, 9801, 1, 1, 88452, 72243171, 666860040, 72243171, 88452, 1, 1, 796797, 5873190687, 491992666011, 491992666011, 5873190687, 796797, 1, 1, 7173360, 476309310660, 360089838858960, 3267815287645062, 360089838858960, 476309310660, 7173360, 1
Offset: 0

Views

Author

Geoffrey Critzer, Dec 02 2024

Keywords

Comments

A matrix M is idempotent if M^2 = M.

Examples

			Triangle T(n,k) begins:
  1;
  1,    1;
  1,   12,      1;
  1,  117,    117,      1;
  1, 1080,  10530,   1080,    1;
  1, 9801, 882090, 882090, 9801, 1;
  ...
		

Crossrefs

Cf. A296548, A053846 (row sums).

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
          `if`(n=0, 1, b(n-1, k-1)+3^k*b(n-1, k)))
        end:
    T:= (n,k)-> 3^(k*(n-k))*b(n, k):
    seq(seq(T(n,k), k=0..n), n=0..8);  # Alois P. Heinz, Dec 02 2024
  • Mathematica
    nn = 8; \[Gamma][n_, q_] := Product[q^n - q^i, {i, 0, n - 1}]; B[n_, q_] := \[Gamma][n, q]/(q - 1)^n; \[Zeta][x_] := Sum[x^n/B[n, 3], {n, 0, nn}];Map[Select[#, # > 0 &] &, Table[B[n, 3], {n,0,nn}]*CoefficientList[Series[\[Zeta][x] \[Zeta][y x], {x, 0, nn}], {x, y}]] // Flatten

Formula

Sum_{n>=0} Sum_{k=0..n} T(n,k)*y^k*x^n/B(n) = e(x)*e(y*x) where e(x) = Sum_{n>=0} x^n/B(n) and B(n) = A053290(n)/2^n.
T(n,k) = A022167(n,k) * A118180(n,k). - Alois P. Heinz, Dec 02 2024

A006103 Gaussian binomial coefficient [ 2n,n ] for q=3.

Original entry on oeis.org

1, 4, 130, 33880, 75913222, 1506472167928, 267598665689058580, 427028776969176679964080, 6129263888495201102915629695046, 791614563787525746761491781638123230424, 920094266641283414155073889843358388073398779900
Offset: 0

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. A022167.

Programs

  • Magma
    q:=3; [n le 0 select 1 else (&*[(1-q^(2*n-j))/(1-q^(j+1)): j in [0..n-1]]): n in [0..15]]; // G. C. Greubel, Mar 09 2019
    
  • Mathematica
    Table[QBinomial[2n, n, 3], {n, 0, 10}] (* Vladimir Reshetnikov, Sep 12 2016 *)
  • PARI
    q=3; {a(n) = prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1))) };
    vector(15, n, n--; a(n)) \\ G. C. Greubel, Mar 09 2019
    
  • Sage
    [gaussian_binomial(2*n,n,3) for n in (0..15)] # G. C. Greubel, Mar 09 2019

Formula

a(n) = Sum_{k=0..n} 3^(k^2)*(A022167(n,k))^2. - Werner Schulte, Mar 09 2019

A156914 Square array T(n, k) = q-binomial(2*n, n, k+1), read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 35, 20, 1, 5, 130, 1395, 70, 1, 6, 357, 33880, 200787, 252, 1, 7, 806, 376805, 75913222, 109221651, 924, 1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432, 1, 9, 2850, 12485095, 200525284806, 1634141006295525, 267598665689058580, 1919209135381395, 12870
Offset: 0

Views

Author

Roger L. Bagula, Feb 18 2009

Keywords

Examples

			Square array begins as:
    1,         1,             1,                1, ...;
    2,         3,             4,                5, ...;
    6,        35,           130,              357, ...;
   20,      1395,         33880,           376805, ...;
   70,    200787,      75913222,       6221613541, ...;
  252, 109221651, 1506472167928, 1634141006295525, ...;
Antidiagonal triangle begins as:
  1;
  1, 2;
  1, 3,    6;
  1, 4,   35,      20;
  1, 5,  130,    1395,         70;
  1, 6,  357,   33880,     200787,           252;
  1, 7,  806,  376805,   75913222,     109221651,          924;
  1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432;
		

Crossrefs

Programs

  • Magma
    QBinomial:= func< n,k,q | q eq 1 select Binomial(n, k) else k eq 0 select 1 else (&*[ (1-q^(n-j+1))/(1-q^j): j in [1..k] ]) >;
    T:= func< n,k | QBinomial(2*n, n, k+1) >;
    [T(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 14 2021
    
  • Mathematica
    T[n_, k_]:= QBinomial[2*n, n, k+1];
    Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 14 2021 *)
  • Sage
    def A156914(n, k): return q_binomial(2*n, n, k+1)
    flatten([[A156914(k,n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 14 2021

Formula

T(n, k) = q-binomial(2*n, n, k+1), where q-binomial(n, k, q) = Product_{j=0..k-1} ( (1-q^(n-j))/(1-q^(j+1)) ), read by antidiagonals. - G. C. Greubel, Jun 14 2021

Extensions

Edited by G. C. Greubel, Jun 14 2021

A308326 The q-analog T(q; n,k) of the triangle A163626 for 0 <= k <= n, for q = 2.

Original entry on oeis.org

1, 1, -1, 1, -4, 3, 1, -13, 33, -21, 1, -40, 270, -546, 315, 1, -121, 2010, -10080, 17955, -9765, 1, -364, 14433, -165270, 707805, -1171800, 615195, 1, -1093, 102123, -2580081, 24421005, -95765355, 151953165, -78129765, 1, -3280, 718140, -39416076, 795752370, -6790268520, 25331269320, -39221142030, 19923090075
Offset: 0

Views

Author

Werner Schulte, May 23 2019

Keywords

Comments

The formulas are given for the general case depending on some fixed integer q. The terms are valid if q = 2.
Special cases: T(0; n,k) = (-1)^k * binomial(n,k) for 0 <= k <= n and T(1; n,k) = A163626(n,k) for 0 <= k <= n.

Examples

			If q = 2 the triangle T(2; n,k) starts:
n\k:  0     1      2        3        4         5         6         7
====================================================================
  0:  1
  1:  1    -1
  2:  1    -4      3
  3:  1   -13     33      -21
  4:  1   -40    270     -546      315
  5:  1  -121   2010   -10080    17955     -9765
  6:  1  -364  14433  -165270   707805  -1171800    615195
  7:  1 -1093 102123 -2580081 24421005 -95765355 151953165 -78129765
etc.
		

Crossrefs

Programs

  • PARI
    q = 2; {T(n,k) = if(k<0 || k>n, 0, if(k==0, 1, if(q==1, (k+1) * T(n-1,k) - k * T(n-1,k-1), ((q^(k+1) - 1)/(q - 1)) * T(n-1,k) - ((q^k - 1)/(q - 1)) * T(n-1,k-1))))};
    for(n=0, 9, for(k=0, n, print1(T(n,k), ", "))) \\ Werner Schulte, May 26 2019

Formula

T(q; n,k) = [k+1]_q * T(q; n-1,k) - [k]_q * T(q; n-1,k-1) for 1 <= k <= n with initial values T(q; n,0) = 1 for n >= 0 and T(q; i,j) = 0 if i < j or j < 0 where [i]_q = (q^i - 1)/(q - 1) for i >= 0.
T(q; n,k) = (1/q^binomial(k+1,2)) * (Sum_{j=0..k} (-1)^j * [k,j]_q * q^binomial(k-j,2) * ([j+1]_q)^n) for 0 <= k <= n and q not equal zero where [m,i]_q are the q-binomials (here A022166 for q = 2) and [i]_q = (q^i - 1)/(q - 1) for i >= 0.
Sum_{k=0..n} T(q; n,k) = A000007(n) for n >= 0.
T(q; n,k)/T(q; k,k) give the q-analogs of the Stirling numbers of the second kind (for q = 2 see A139382, but offset 1).
T(q; n,n) = (-1)^n * Product_{j=1..n} [j]_q for n>=0 with empty product 1 (case n = 0) where [i]_q = (q^i - 1)/(q - 1) for i >= 0.
T(q; n,1) = -[n,1]_(q+1) for n >= 1 where [m,i]_q are the q-binomials (here A022166 for q = 2 and A022167 for q = 3).
G.f. of column k: col(q; t,k) = Sum_{n>=k} T(q; n,k)*t^n = ((-t)^k/(1-t)) * Product_{j=1..k} ([i]_q/(1-[i+1]_q*t)) for k>=0 with empty product 1 (case k=0) and [i]_q = i if q = 1 otherwise (q^i-1)/(q-1) for i>=0.

A383753 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = 2^(n-k) * T(n-1,k-1) + 3^k * T(n-1,k) with T(n,k) = n^k if n*k=0.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 19, 19, 1, 1, 65, 247, 65, 1, 1, 211, 2743, 2743, 211, 1, 1, 665, 28063, 96005, 28063, 665, 1, 1, 2059, 273847, 3041143, 3041143, 273847, 2059, 1, 1, 6305, 2596399, 90873965, 294990871, 90873965, 2596399, 6305, 1, 1, 19171, 24174631, 2619766591, 26802227431, 26802227431, 2619766591, 24174631, 19171, 1
Offset: 0

Views

Author

Seiichi Manyama, May 09 2025

Keywords

Examples

			Triangle begins:
  1;
  1,    1;
  1,    5,      1;
  1,   19,     19,       1;
  1,   65,    247,      65,       1;
  1,  211,   2743,    2743,     211,      1;
  1,  665,  28063,   96005,   28063,    665,    1;
  1, 2059, 273847, 3041143, 3041143, 273847, 2059, 1;
  ...
		

Crossrefs

Columns k=0..3 give A000012, A001047, A019443(n-2), A383754(n-3).
Cf. A022167.

Programs

  • PARI
    T(n, k) = if(n*k==0, n^k, 2^(n-k)*T(n-1, k-1)+3^k*T(n-1, k));
    
  • Sage
    def a_row(n): return [2^(k*(n-k))*q_binomial(n, k, 3/2) for k in (0..n)]
    for n in (0..9): print(a_row(n))

Formula

T(n,k) = 2^(k*(n-k)) * q-binomial(n, k, 3/2).
T(n,k) = 3^(n-k) * T(n-1,k-1) + 2^k * T(n-1,k).
T(n,k) = T(n,n-k).
G.f. of column k: x^k * exp( Sum_{j>=1} f((k+1)*j)/f(j) * x^j/j ), where f(j) = 3^j - 2^j.
Previous Showing 21-26 of 26 results.