cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A058394 A square array based on natural numbers (A000027) with each term being the sum of 2 consecutive terms in the previous row.

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 0, 2, 2, 1, 3, 2, 3, 3, 1, 0, 3, 4, 5, 4, 1, 4, 3, 5, 7, 8, 5, 1, 0, 4, 6, 9, 12, 12, 6, 1, 5, 4, 7, 11, 16, 20, 17, 7, 1, 0, 5, 8, 13, 20, 28, 32, 23, 8, 1, 6, 5, 9, 15, 24, 36, 48, 49, 30, 9, 1, 0, 6, 10, 17, 28, 44, 64, 80, 72, 38, 10, 1, 7, 6, 11, 19, 32, 52, 80, 112, 129
Offset: 0

Views

Author

Henry Bottomley, Nov 24 2000

Keywords

Comments

Changing the formula by replacing T(2n,0)=T(n,2) by T(2n,0)=T(n,m) for some other value of m, would make the generating function change to coefficient of x^n in expansion of (1+x)^k/(1-x^2)^m. This would produce A058393, A058395, A057884 (and effectively A007318).

Examples

			Rows are (1,0,2,0,3,0,4,...), (1,1,2,2,3,3,...), (1,2,3,4,5,6,...), (1,3,5,7,9,11,...), etc.
		

Crossrefs

Rows are A027656 (A000027 with zeros), A008619, A000027, A005408, A008574 etc. Columns are A000012, A001477, A022856 etc. Diagonals include A034007, A045891, A045623, A001792, A001787, A000337, A045618, A045889, A034009, A055250, A055251 etc. The triangle A055249 also appears in half of the array.

Formula

T(n, k)=T(n-1, k-1)+T(n, k-1) with T(0, k)=1, T(2n, 0)=T(n, 2) and T(2n+1, 0)=0. Coefficient of x^n in expansion of (1+x)^k/(1-x^2)^2.

A067337 Triangle where T(n,k)=2*T(n,k-1)+C(n-1,k)-C(n-1,k-1) and n>=k>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 5, 9, 1, 4, 8, 14, 27, 1, 5, 12, 22, 41, 81, 1, 6, 17, 34, 63, 122, 243, 1, 7, 23, 51, 97, 185, 365, 729, 1, 8, 30, 74, 148, 282, 550, 1094, 2187, 1, 9, 38, 104, 222, 430, 832, 1644, 3281, 6561, 1, 10, 47, 142, 326, 652, 1262, 2476, 4925, 9842
Offset: 0

Views

Author

Henry Bottomley, Jan 15 2002

Keywords

Examples

			Rows start 1; 1,1; 1,2,3; 1,3,5,9; 1,4,8,14,27; etc. T(4,0)=2*0+1-0=1; T(4,1)=2*1+3-1=4; T(4,2)=2*4+3-3=8; T(4,3)=2*8+1-3=14; T(4,4)=2*14+0-1=27.
		

Crossrefs

Row sums are A025192. Columns include A000012, A000027 and A022856 (essentially). Right hand columns include A000244 (essentially), A007051 and A047926. Central diagonal is A067336.

Formula

T(n, k)=2*T(n, k-1)+A037012(n, k). T(n, k)=T(n-1, k-1)+T(n-1, k) if k0.

A354902 a(n) = 2*n^2 - 6*n + 11 for n > 1 with a(0)=1 and a(1)=3.

Original entry on oeis.org

1, 3, 7, 11, 19, 31, 47, 67, 91, 119, 151, 187, 227, 271, 319, 371, 427, 487, 551, 619, 691, 767, 847, 931, 1019, 1111, 1207, 1307, 1411, 1519, 1631, 1747, 1867, 1991, 2119, 2251, 2387, 2527, 2671, 2819, 2971, 3127, 3287, 3451, 3619, 3791, 3967, 4147, 4331, 4519, 4711, 4907
Offset: 0

Views

Author

Sumukh Patel, Jun 11 2022

Keywords

Comments

a(n) is the minimum number of nodes required for a full binary tree where each node in all longest paths from the root node down to any leaf node is height-balanced and the root node has a height balance factor of 0.
Full binary tree: A binary tree is called a full binary tree if each node has exactly two children or no children.

Examples

			The diagrams below illustrate the terms a(3)=11 and a(4)=19.
           R                         R
          / \                       / \
         /   \                     /   \
        /     \                   /     \
       o       o                 /       \
      / \     / \               /         \
     o   N   N   o             /           \
    / \         / \           /             \
   N   N       N   N         o               o
                            / \             / \
                           /   \           /   \
                          /     \         /     \
                         o       o       o       o
                        / \     / \     / \     / \
                       o   N   N   N   N   N   o   N
                      / \                     / \
                     N   N                   N   N
		

Crossrefs

Programs

  • C
    int a(int n){ return n>1 ? 2*(n*n) - 6*n + 11 : 2*n + 1; }
  • Mathematica
    CoefficientList[Series[(1 + x^2 - 2 x^3 + 4 x^4)/(1 - x)^3, {x, 0, 51}], x] (* Michael De Vlieger, Jun 19 2022 *)

Formula

a(n) = 2*A027688(n-2) + 1, for n >= 2.
a(n) = 4*A022856(n+2) - 1, for n >= 1.
a(n) = a(n-1) + 4*(n-2) for n >= 3.
G.f.: (1 + x^2 - 2*x^3 + 4*x^4)/(1 - x)^3. - Stefano Spezia, Jun 12 2022
Sum_{n>=2} 1/a(n) = Pi*tanh(sqrt(13)*Pi/2)/(2*sqrt(13)). - Amiram Eldar, Jul 10 2022

A026041 a(n) = d(n)/2, where d = A026040.

Original entry on oeis.org

12, 20, 32, 49, 72, 102, 140, 187, 244, 312, 392, 485, 592, 714, 852, 1007, 1180, 1372, 1584, 1817, 2072, 2350, 2652, 2979, 3332, 3712, 4120, 4557, 5024, 5522, 6052, 6615, 7212, 7844, 8512, 9217, 9960, 10742, 11564, 12427, 13332, 14280, 15272, 16309, 17392, 18522, 19700, 20927, 22204, 23532, 24912, 26345
Offset: 4

Views

Author

Keywords

Programs

Formula

For n>4, a(n) = a(n-1)+A022856(n+2). - Levi R. Self (levi.r.self(AT)gmail.com), Aug 04 2007
G.f.: -x^4*(7*x^3-24*x^2+28*x-12)/(x-1)^4. - Colin Barker, Oct 07 2012
a(n) = n*(n^2-3*n+14)/6. - Vincenzo Librandi, Oct 17 2013

A318054 a(n) = n*(n + 1)*(n^2 + n + 22)/24.

Original entry on oeis.org

0, 2, 7, 17, 35, 65, 112, 182, 282, 420, 605, 847, 1157, 1547, 2030, 2620, 3332, 4182, 5187, 6365, 7735, 9317, 11132, 13202, 15550, 18200, 21177, 24507, 28217, 32335, 36890, 41912, 47432, 53482, 60095, 67305, 75147, 83657, 92872, 102830, 113570, 125132, 137557
Offset: 0

Views

Author

Luce ETIENNE, Aug 14 2018

Keywords

Examples

			a(1) = 2; a(2)= 5+2 = 7; a(3) = 10+5+2 = 17; a(4) = 18+10+5+2 = 35; a(5) = 30+18+10+5+2 = 65; a(6) = 47+30+18+10+5+2 = 112.
		

Crossrefs

Partial sums of A177787.

Programs

  • GAP
    List([0..30],n->n*(n+1)*(n^2+n+22)/24); # Muniru A Asiru, Aug 15 2018
    
  • Maple
    seq(coeff(series(x*(2*x^2-3*x+2)/(1-x)^5, x,n+1),x,n),n=0..30); # Muniru A Asiru, Aug 15 2018
  • PARI
    a(n) = n*(n+1)*(n^2+n+22)/24; \\ Michel Marcus, Aug 17 2018

Formula

G.f.: x*(2*x^2-3*x+2)/(1-x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = (1/6)*Sum_{i=1..n} (n-i)*((n-i)^2+11), for n >= 1.

A062507 Table by antidiagonals related to partial sums and differences of Pell numbers (A000129).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 2, 1, 1, 0, 4, 3, 2, 1, 0, 10, 7, 5, 3, 1, 0, 24, 17, 12, 8, 4, 1, 0, 58, 41, 29, 20, 12, 5, 1, 0, 140, 99, 70, 49, 32, 17, 6, 1, 0, 338, 239, 169, 119, 81, 49, 23, 7, 1, 0, 816, 577, 408, 288, 200, 130, 72, 30, 8, 1, 0, 1970, 1393, 985, 696, 488, 330, 202, 102
Offset: 0

Views

Author

Henry Bottomley, Jul 09 2001

Keywords

Examples

			Rows start (0,1,0,2,4,10,...), (0,1,1,3,7,17,...), (0,1,2,5,12,29,...) etc.
		

Crossrefs

Rows are effectively A052542, A001333, A000129, A048739, A048776. Columns are effectively A000004, A000012, A001477, A022856.

Formula

T(n, k) =T(n, k-1)+T(n-1, k) =2T(n, k-1)+T(n, k-2)+C(n+k-3, k) for n>2.

A235501 Riordan array (1/(1-2*x^2), x/(1-x)).

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 0, 3, 2, 1, 4, 3, 5, 3, 1, 0, 7, 8, 8, 4, 1, 8, 7, 15, 16, 12, 5, 1, 0, 15, 22, 31, 28, 17, 6, 1, 16, 15, 37, 53, 59, 45, 23, 7, 1, 0, 31, 52, 90, 112, 104, 68, 30, 8, 1, 32, 31, 83, 142, 202, 216, 172, 98, 38, 9, 1, 0, 63, 114, 225
Offset: 0

Views

Author

Philippe Deléham, Jan 11 2014

Keywords

Comments

Row sums are A007179(n+1).

Examples

			Triangle begins (0<=k<=n):
1
0, 1
2, 1, 1
0, 3, 2, 1
4, 3, 5, 3, 1
0, 7, 8, 8, 4, 1
8, 7, 15, 16, 12, 5, 1
0, 15, 22, 31, 28, 17, 6, 1
		

Crossrefs

Cf. Columns: A077957, A052551, A077866.
Diagonals: A000012, A001477, A022856.
Cf. Similar sequences: A059260, A191582.

Formula

T(n,n)=1, T(2n,0)=2^n, T(2n+1,0)=0, T(n,k)=T(n-1,k-1)+T(n-1,k) for 0
T(n,k)=T(n-1,k)+T(n-1,k-1)+2*T(n-2,k)-T(n-3,k)-2*T(n-3,k-1), T(0,0)=1, T(1,0)=0, T(1,1)=1, T(n,k)=0 if k<0 or if k>n.
T(n,n)=1, T(n+1,n)=n, T(n+2,n)=n*(n+1)/2 + 2.
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(3*x + 2*x^2/2! + x^3/3!) = 3*x + 8*x^2/2! + 16*x^3/3! + 28*x^4/4! + 45*x^5/5! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014
Previous Showing 11-17 of 17 results.