Original entry on oeis.org
1025874, 1028574, 1042587, 1042857, 1052874, 1054287, 1072854, 1074285, 1078524, 1078542, 1085274, 1085427, 1087254, 1087425, 1087524, 1087542, 1207854, 1208754, 1240785, 1240875, 1245789, 1245879, 1247589, 1247859, 1248579, 1248759, 1250874, 1254087, 1257489
Offset: 1
a(1)=1025874 because 1025874 and 2*1025874=2051748 both use the same set of digits {0,1,2,4,5,7,8};
a(21)=1245789 because 1245789 and 2*1245789=2491578 both use the same set of digits {1,2,4,5,7,8,9}.
Cf.
A023086 (k and 2*k are anagrams),
A023088 (k and 4*k are anagrams).
-
anaQ[n_]:=Max[DigitCount[n]]==1&&Union[IntegerDigits[n]] == Union[ IntegerDigits[2n]]; Select[Range[1000000,1250000],anaQ] (* Harvey P. Dale, Oct 30 2011 *)
A159827
a(n) = number of n-digit terms in A023086.
Original entry on oeis.org
1, 0, 0, 0, 0, 12, 288, 4032, 47904, 398736, 2668464
Offset: 1
A023087
Numbers k such that k and 3*k are anagrams.
Original entry on oeis.org
0, 1035, 2475, 10035, 10350, 12375, 14247, 14724, 23751, 24147, 24714, 24750, 24876, 24975, 27585, 28575, 100035, 100350, 102375, 103428, 103500, 107235, 113724, 114237, 123507, 123714, 123750, 123876, 123975, 124137, 128034, 134505, 135045
Offset: 1
- Fred Schuh, The Master Book of Mathematical Recreations, Dover, New York, 1968, pp. 25-31.
-
si[n_] := Sort@ IntegerDigits@ n; Flatten@ {0, Table[ Select[ Range[10^d + 8, 4 10^d - 1, 9], si[#] == si[3 #] &], {d, 0, 6}]} (* Giovanni Resta, Mar 20 2017, corrected by Philippe Guglielmetti, Jul 16 2018 *)
A023088
Numbers k such that k and 4*k are anagrams.
Original entry on oeis.org
0, 1782, 2178, 16782, 17604, 17802, 17820, 17832, 17982, 18027, 19728, 19782, 20178, 21678, 21780, 21783, 21798, 21978, 23958, 102564, 103845, 104769, 104895, 105264, 106254, 114528, 125406, 125604, 126054, 128052, 128205, 140256, 140526, 142857
Offset: 1
-
si[n_] := Sort@ IntegerDigits@ n; Flatten@{0, Table[Select[Range[10^d + 2, 3 10^d - 1, 3], si[#] == si[4 #] &], {d, 0, 6}]} (* Giovanni Resta, Mar 20 2017, corrected by Philippe Guglielmetti, Jul 16 2018 *)
Select[Range[0,150000,3],Sort[IntegerDigits[#]]==Sort[ IntegerDigits[ 4#]]&] (* Harvey P. Dale, Dec 23 2017 *)
A023093
Numbers k such that k and 9*k are anagrams.
Original entry on oeis.org
0, 1089, 10089, 10449, 10890, 10899, 10989, 100089, 100449, 100890, 100899, 100989, 102249, 104490, 104499, 106749, 107793, 107892, 108900, 108990, 108999, 109890, 109899, 109989, 1000089, 1000449, 1000890, 1000899, 1000989, 1002249, 1004490
Offset: 1
-
si[n_] := Sort@ IntegerDigits@ n; Flatten@{0, Table[Select[Range[10^d + 8, 2 10^d - 1, 9], si[#] == si[9 #] &], {d, 0, 6}]} (* Giovanni Resta, Mar 20 2017 *)
A023089
Numbers k such that k and 5*k are anagrams.
Original entry on oeis.org
0, 142857, 148257, 174285, 174825, 1025748, 1028574, 1057428, 1057482, 1082574, 1085742, 1402857, 1408257, 1420857, 1425708, 1425789, 1425897, 1428057, 1428570, 1428579, 1428597, 1429785, 1429857, 1457028, 1457082, 1457829, 1458297, 1480257
Offset: 1
- Fred Schuh, The Master Book of Mathematical Recreations, Dover, New York, 1968, pp. 35-37.
-
si[n_] := Sort@ IntegerDigits@ n; Flatten@{0, Table[Select[Range[10^d + 8, 2 10^d - 1, 9], si[#] == si[5 #] &], {d, 0, 6}]} (* Giovanni Resta, Mar 20 2017 *)
A023090
Numbers k such that k and 6*k are anagrams.
Original entry on oeis.org
0, 1386, 13860, 13986, 14085, 14859, 15192, 106848, 120267, 126702, 126873, 137286, 138402, 138600, 138627, 139860, 139986, 140085, 140184, 140850, 140985, 141858, 142857, 148509, 148590, 148599, 149085, 149859, 150192, 151893, 151920, 151992
Offset: 1
-
Select[Range[0,160000],Sort[IntegerDigits[#]]==Sort[IntegerDigits[ 6#]]&] (* Harvey P. Dale, Mar 18 2015 *)
A023091
Numbers k such that k and 7*k are anagrams.
Original entry on oeis.org
0, 1359, 11688, 11883, 12903, 13029, 13359, 13449, 13590, 13599, 13659, 107583, 108726, 111873, 116688, 116880, 116988, 118731, 118830, 118833, 119883, 123876, 124875, 126888, 127389, 129003, 129030, 129033, 129903, 130029, 130149, 130290
Offset: 1
-
si[n_] := Sort@ IntegerDigits@ n; Flatten@{0, Table[Select[Range[10^d + 2, 2 10^d - 1, 3], si[#] == si[7 #] &], {d, 0, 6}]} (* Giovanni Resta, Mar 20 2017 *)
Select[3*Range[0,50000],Sort[IntegerDigits[7 #]]==Sort[IntegerDigits[#]]&] (* Harvey P. Dale, Jan 06 2022 *)
A023092
Numbers k such that k and 8*k are anagrams.
Original entry on oeis.org
0, 113967, 116397, 1014138, 1045638, 1064538, 1139148, 1139670, 1139967, 1141398, 1156392, 1163970, 1163997, 10014138, 10045638, 10064538, 10141380, 10145628, 10148913, 10149138, 10182564, 10265382, 10268145, 10288836, 10289637, 10296387
Offset: 1
-
fQ[n_] := Sort@ IntegerDigits[ n] == Sort@ IntegerDigits[ 8n]; Select[ Range[0, 10328885], fQ] (* Robert G. Wilson v, Oct 25 2012 *)
Select[Range[0,103*10^5,9],Sort[IntegerDigits[#]]==Sort[IntegerDigits[8#]]&] (* Harvey P. Dale, Jul 18 2025 *)
A323711
Numbers k such that k, 2*k, and 3*k are anagrams of each other.
Original entry on oeis.org
142857, 285714, 1402857, 1428570, 1428597, 1429857, 2857014, 2857140, 2859714, 2985714, 14002857, 14028570, 14028597, 14029857, 14285700, 14285970, 14285997, 14298570, 14298597, 14299857, 15623784, 15843762, 17438256, 17562438, 18243756, 21584376, 23784156, 24375618, 24381756
Offset: 1
The first entry, 142857, is well known for having n, 2*n, 3*n, 4*n, 5*n and 6*n all being anagrams. The next two numbers for which that happens are 1428570 and 1429857.
Subsequence of
A023086, numbers where n and 2*n are anagrams.
-
char[] digits1, digits2, digits3;
int val1, val2, val3;
for (int value=10; value<25000000; value++) {
digits1 = Integer.toString(value).toCharArray();
digits2 = Integer.toString(2*value).toCharArray();
digits3 = Integer.toString(3*value).toCharArray();
if (digits1.length == digits3.length) {
Arrays.sort(digits1);
Arrays.sort(digits2);
Arrays.sort(digits3);
val1 = Integer.parseInt(new String(digits1));
val2 = Integer.parseInt(new String(digits2));
val3 = Integer.parseInt(new String(digits3));
if ((val1 == val2) && (val1 == val3)) {
System.out.print(value + ",");
}
}
}
-
A323711_list = [n for n in range(9,10**7,9) if sorted(str(n)) == sorted(str(2*n)) == sorted(str(3*n))] # Chai Wah Wu, Feb 02 2019
Showing 1-10 of 16 results.
Comments