A270531
a(n) = Sum_{i=1..floor(n/2)} (i*(n-i))!.
Original entry on oeis.org
0, 0, 1, 2, 30, 744, 403320, 482631120, 22230943262640, 2439304469060699520, 16131709536027319923050880, 265557748777251180632423132716800, 382326737887135184960649117960539544556800, 1405822033408121123332642294795422193345577766681600
Offset: 0
a(4)=30; There are 2 partitions of 4 into two parts: (3,1) and (2,2). The sum of the factorials of the products of the parts in each partition is: (3*1)! + (2*2)! = 3! + 4! = 6 + 24 = 30.
-
A270531:=n->add((i*(n-i))!, i=1..floor(n/2)): seq(A270531(n), n=0..15);
-
Table[Sum[(i*(n - i))!, {i, Floor[n/2]}], {n, 0, 15}]
-
a(n) = sum(k=1, n\2, (k*(n-k))!); \\ Michel Marcus, Mar 22 2016
A293452
Triangle T(n,k) read by rows: T(n,k) is the number of iterations to reach a final state for an n X k lattice of sandpiles on a torus according to rules specified in A249872.
Original entry on oeis.org
0, 1, 7, 2, 14, 28, 7, 35, 65, 133, 10, 47, 86, 198, 316, 22, 86, 134, 331, 487, 913, 28, 106, 164, 399, 696, 1099, 1360, 50, 159, 288, 589, 930, 1518, 1798, 2987, 60, 187, 336, 681, 1070, 1966, 2320, 3432, 4340, 95, 265, 515, 1052, 1386, 2430, 3475, 4484, 5977, 7495, 110, 303, 584, 1184, 1556, 2718
Offset: 1
Triangle begins:
0
1, 7
2, 14, 28
7, 35, 65, 133
10, 47, 86, 198, 316
22, 86, 134, 331, 487, 913
28, 106, 164, 399, 696, 1099, 1360
50, 159, 288, 589, 930, 1518, 1798, 2987
60, 187, 336, 681, 1070, 1966, 2320, 3432, 4340
95, 265, 515, 1052, 1386, 2430, 3475, 4484, 5977, 7495
...
A303120
Total area of all rectangles of size p X q such that p + q = n^2 and p <= q.
Original entry on oeis.org
0, 7, 60, 372, 1300, 4047, 9800, 22352, 44280, 84575, 147620, 251412, 402220, 632247, 949200, 1406272, 2011440, 2847447, 3920460, 5353300, 7147140, 9477567, 12336280, 15966672, 20345000, 25800047, 32284980, 40234292, 49568540, 60851175, 73958560, 89609472
Offset: 1
a(3) = 60; The rectangles are 8 X 1, 7 X 2, 6 X 3 and 5 X 4. The total area is then 8*1 + 7*2 + 6*3 + 5*4 = 60.
a(4) = 372; The rectangles are 15 X 1, 14 X 2, 13 X 3, 12 X 4, 11 X 5, 10 X 6, 9 X 7 and 8 X 8. The total area of the rectangles is then 15*1 + 14*2 + 13*3 + 12*4 + 11*5 + 10*6 + 9*7 + 8*8 = 372.
-
List([1..35],n->Sum([1..Int(n^2/2)],i->i*(n^2-i))); # Muniru A Asiru, Mar 15 2019
-
[&+[i*(n^2-i): i in [0..Floor(n^2/2)]]: n in [1..35]]; // Vincenzo Librandi, Apr 19 2018
-
A303120:=n->add(i*(n^2-i), i=1..floor(n^2/2)): seq(A303120(n), n=1..50); # Wesley Ivan Hurt, Mar 12 2019
-
Table[Sum[i*(n^2 - i), {i, Floor[n^2/2]}], {n, 50}]
-
a(n) = sum(i=1, n^2\2, i*(n^2-i)); \\ Michel Marcus, Mar 13 2019
A368091
Triangle read by rows. T(n, k) = Sum_{p in P(n, k)} Product_{r in p} r, where P(n, k) are the partitions of n with length k.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 7, 2, 1, 0, 5, 10, 7, 2, 1, 0, 6, 22, 18, 7, 2, 1, 0, 7, 28, 34, 18, 7, 2, 1, 0, 8, 50, 62, 50, 18, 7, 2, 1, 0, 9, 60, 121, 86, 50, 18, 7, 2, 1, 0, 10, 95, 182, 189, 118, 50, 18, 7, 2, 1
Offset: 0
Table T(n, k) starts:
[0] [1]
[1] [0, 1]
[2] [0, 2, 1]
[3] [0, 3, 2, 1]
[4] [0, 4, 7, 2, 1]
[5] [0, 5, 10, 7, 2, 1]
[6] [0, 6, 22, 18, 7, 2, 1]
[7] [0, 7, 28, 34, 18, 7, 2, 1]
[8] [0, 8, 50, 62, 50, 18, 7, 2, 1]
[9] [0, 9, 60, 121, 86, 50, 18, 7, 2, 1]
-
def T(n, k):
return sum(product(r for r in p) for p in Partitions(n, length=k))
for n in range(10): print([T(n, k) for k in range(n + 1)])
A110422
a(n) = sum( (-1)^(r+1)*(n-r)*r, r = 1..floor(n/2) ).
Original entry on oeis.org
1, 2, -1, -2, 6, 8, -6, -8, 15, 18, -15, -18, 28, 32, -28, -32, 45, 50, -45, -50, 66, 72, -66, -72, 91, 98, -91, -98, 120, 128, -120, -128, 153, 162, -153, -162, 190, 200, -190, -200, 231, 242, -231, -242, 276, 288, -276, -288, 325, 338, -325, -338, 378, 392, -378, -392, 435, 450, -435, -450, 496, 512, -496, -512, 561
Offset: 2
a(8) = -6 because 7*1-6*2+5*3-4*4 = -6.
-
a:=n->sum((-1)^(r+1)*(n-r)*r,r=1..floor(n/2)): seq(a(n),n=2..70); # Emeric Deutsch, Aug 08 2005
-
CoefficientList[Series[(2 x^3 - x^2 + 1)/((x - 1)^2 (x^2 + 1)^3), {x, 0, 70}], x] (* Vincenzo Librandi, Oct 30 2014 *)
LinearRecurrence[{2,-4,6,-6,6,-4,2,-1},{1,2,-1,-2,6,8,-6,-8},70] (* Harvey P. Dale, Apr 04 2020 *)
-
Vec(x^2*(2*x^3-x^2+1)/((x-1)^2*(x^2+1)^3) + O(x^100)) \\ Colin Barker, Oct 30 2014
A337173
a(n) = Sum_{k=1..floor(n/2)} k^2 * (n-k)^2.
Original entry on oeis.org
0, 1, 4, 25, 52, 170, 280, 674, 984, 1979, 2684, 4795, 6188, 10164, 12656, 19524, 23664, 34773, 41268, 58333, 68068, 93214, 107272, 143078, 162760, 212303, 239148, 306047, 341852, 430312, 477152, 592008, 652256, 799017, 875364, 1060257, 1155732, 1385746, 1503736
Offset: 1
a(6) = 1^2*5^2 + 2^2*4^2 + 3^2*3^2 = 25 + 64 + 81 = 170.
- Index entries for linear recurrences with constant coefficients, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).
-
CoefficientList[Series[x (1 + 3 x + 16 x^2 + 12 x^3 + 23 x^4 + 5 x^5 + 4 x^6)/((1 - x)^6 (1 + x)^5), {x, 0, 80}], x]
A345026
Total area of all i X j rectangles where i and j are the final digits of positive integers r and s such that r + s = n.
Original entry on oeis.org
0, 1, 2, 7, 10, 22, 28, 50, 60, 95, 100, 131, 122, 152, 130, 162, 128, 165, 120, 165, 200, 226, 242, 252, 250, 247, 228, 215, 180, 260, 300, 356, 362, 397, 370, 387, 328, 330, 240, 330, 400, 451, 482, 497, 490, 472, 428, 380, 300, 425, 500, 581, 602, 642, 610, 612, 528, 495, 360
Offset: 1
a(20) = 165; There are 10 ways to write 20 as the sum of two positive integers: (19,1), (18,2), (17,3), (16,4), (15,5), (14,6), (13,7), (12,8), (11,9), and (10,10). Using the final digits from each pair as the side lengths of the rectangles, the combined area is 9*1 + 8*2 + 7*3 + 6*4 + 5*5 + 4*6 + 3+7 + 2*8 + 1*9 + 0*0 = 165.
-
Table[Sum[Mod[k, 10]*Mod[n - k, 10], {k, Floor[n/2]}], {n, 60}]
Comments