cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A270531 a(n) = Sum_{i=1..floor(n/2)} (i*(n-i))!.

Original entry on oeis.org

0, 0, 1, 2, 30, 744, 403320, 482631120, 22230943262640, 2439304469060699520, 16131709536027319923050880, 265557748777251180632423132716800, 382326737887135184960649117960539544556800, 1405822033408121123332642294795422193345577766681600
Offset: 0

Views

Author

Wesley Ivan Hurt, Mar 18 2016

Keywords

Comments

Sum of the factorials of the products of the parts in each partition of n into two parts.

Examples

			a(4)=30; There are 2 partitions of 4 into two parts: (3,1) and (2,2). The sum of the factorials of the products of the parts in each partition is: (3*1)! + (2*2)! = 3! + 4! = 6 + 24 = 30.
		

Crossrefs

Programs

  • Maple
    A270531:=n->add((i*(n-i))!, i=1..floor(n/2)): seq(A270531(n), n=0..15);
  • Mathematica
    Table[Sum[(i*(n - i))!, {i, Floor[n/2]}], {n, 0, 15}]
  • PARI
    a(n) = sum(k=1, n\2, (k*(n-k))!); \\ Michel Marcus, Mar 22 2016

Formula

a(n) ~ (n^2/4)! ~ sqrt(Pi) * n^(n^2/2+1) / (2^((n^2+1)/2) * exp(n^2/4)) if n is even and a(n) ~ ((n^2-1)/4)! ~ sqrt(Pi) * n^((n^2+1)/2) / (2^(n^2/2) * exp(n^2/4)) if n is odd. - Vaclav Kotesovec, Mar 18 2016

A293452 Triangle T(n,k) read by rows: T(n,k) is the number of iterations to reach a final state for an n X k lattice of sandpiles on a torus according to rules specified in A249872.

Original entry on oeis.org

0, 1, 7, 2, 14, 28, 7, 35, 65, 133, 10, 47, 86, 198, 316, 22, 86, 134, 331, 487, 913, 28, 106, 164, 399, 696, 1099, 1360, 50, 159, 288, 589, 930, 1518, 1798, 2987, 60, 187, 336, 681, 1070, 1966, 2320, 3432, 4340, 95, 265, 515, 1052, 1386, 2430, 3475, 4484, 5977, 7495, 110, 303, 584, 1184, 1556, 2718
Offset: 1

Views

Author

Joerg Arndt, Oct 09 2017

Keywords

Examples

			Triangle begins:
0
1, 7
2, 14, 28
7, 35, 65, 133
10, 47, 86, 198, 316
22, 86, 134, 331, 487, 913
28, 106, 164, 399, 696, 1099, 1360
50, 159, 288, 589, 930, 1518, 1798, 2987
60, 187, 336, 681, 1070, 1966, 2320, 3432, 4340
95, 265, 515, 1052, 1386, 2430, 3475, 4484, 5977, 7495
...
		

Crossrefs

Cf. A249872.

Formula

T(n,n) = A249872(n).
Conjecture: T(n,1) = A023855(n).

A303120 Total area of all rectangles of size p X q such that p + q = n^2 and p <= q.

Original entry on oeis.org

0, 7, 60, 372, 1300, 4047, 9800, 22352, 44280, 84575, 147620, 251412, 402220, 632247, 949200, 1406272, 2011440, 2847447, 3920460, 5353300, 7147140, 9477567, 12336280, 15966672, 20345000, 25800047, 32284980, 40234292, 49568540, 60851175, 73958560, 89609472
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 18 2018

Keywords

Comments

Sum of all the products formed using the corresponding largest and smallest parts of each partition of n^2 into two parts. - Wesley Ivan Hurt, Mar 26 2019

Examples

			a(3) = 60; The rectangles are 8 X 1, 7 X 2, 6 X 3 and 5 X 4. The total area is then 8*1 + 7*2 + 6*3 + 5*4 = 60.
a(4) = 372; The rectangles are 15 X 1, 14 X 2, 13 X 3, 12 X 4, 11 X 5, 10 X 6, 9 X 7 and 8 X 8. The total area of the rectangles is then 15*1 + 14*2 + 13*3 + 12*4 + 11*5 + 10*6 + 9*7 + 8*8 = 372.
		

Crossrefs

Programs

  • GAP
    List([1..35],n->Sum([1..Int(n^2/2)],i->i*(n^2-i))); # Muniru A Asiru, Mar 15 2019
  • Magma
    [&+[i*(n^2-i): i in [0..Floor(n^2/2)]]: n in [1..35]]; // Vincenzo Librandi, Apr 19 2018
    
  • Maple
    A303120:=n->add(i*(n^2-i), i=1..floor(n^2/2)): seq(A303120(n), n=1..50); # Wesley Ivan Hurt, Mar 12 2019
  • Mathematica
    Table[Sum[i*(n^2 - i), {i, Floor[n^2/2]}], {n, 50}]
  • PARI
    a(n) = sum(i=1, n^2\2, i*(n^2-i)); \\ Michel Marcus, Mar 13 2019
    

Formula

a(n) = Sum_{i=1..floor(n^2/2)} i * (n^2 - i).
Conjectures from Colin Barker, Apr 19 2018 and Mar 19 2019: (Start)
G.f.: x^2*(7 + 46*x + 224*x^2 + 386*x^3 + 594*x^4 + 386*x^5 + 224*x^6 + 46*x^7 + 7*x^8) / ((1 - x)^7*(1 + x)^5).
a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) - 5*a(n-4) + 20*a(n-5) - 20*a(n-7) + 5*a(n-8) + 10*a(n-9) - 4*a(n-10) - 2*a(n-11) + a(n-12) for n > 12.
a(n) = (n^2*(-4 + 3*(1+(-1)^n)*n^2 + 4*n^4)) / 48.
(End)

A368091 Triangle read by rows. T(n, k) = Sum_{p in P(n, k)} Product_{r in p} r, where P(n, k) are the partitions of n with length k.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 7, 2, 1, 0, 5, 10, 7, 2, 1, 0, 6, 22, 18, 7, 2, 1, 0, 7, 28, 34, 18, 7, 2, 1, 0, 8, 50, 62, 50, 18, 7, 2, 1, 0, 9, 60, 121, 86, 50, 18, 7, 2, 1, 0, 10, 95, 182, 189, 118, 50, 18, 7, 2, 1
Offset: 0

Views

Author

Peter Luschny, Dec 11 2023

Keywords

Examples

			Table T(n, k) starts:
  [0] [1]
  [1] [0, 1]
  [2] [0, 2,  1]
  [3] [0, 3,  2,   1]
  [4] [0, 4,  7,   2,  1]
  [5] [0, 5, 10,   7,  2,  1]
  [6] [0, 6, 22,  18,  7,  2,  1]
  [7] [0, 7, 28,  34, 18,  7,  2, 1]
  [8] [0, 8, 50,  62, 50, 18,  7, 2, 1]
  [9] [0, 9, 60, 121, 86, 50, 18, 7, 2, 1]
		

Crossrefs

Cf. A368090, A074141, A023855, A006906 (row sums).

Programs

  • SageMath
    def T(n, k):
        return sum(product(r for r in p) for p in Partitions(n, length=k))
    for n in range(10): print([T(n, k) for k in range(n + 1)])

A110422 a(n) = sum( (-1)^(r+1)*(n-r)*r, r = 1..floor(n/2) ).

Original entry on oeis.org

1, 2, -1, -2, 6, 8, -6, -8, 15, 18, -15, -18, 28, 32, -28, -32, 45, 50, -45, -50, 66, 72, -66, -72, 91, 98, -91, -98, 120, 128, -120, -128, 153, 162, -153, -162, 190, 200, -190, -200, 231, 242, -231, -242, 276, 288, -276, -288, 325, 338, -325, -338, 378, 392, -378, -392, 435, 450, -435, -450, 496, 512, -496, -512, 561
Offset: 2

Views

Author

Amarnath Murthy, Aug 01 2005

Keywords

Comments

a(4n)=-a(4n-2); a(4n+1)=-a(4n-1). If sum in definition is not alternating one obtains A023855. - Emeric Deutsch, Aug 08 2005

Examples

			a(8) = -6 because 7*1-6*2+5*3-4*4 = -6.
		

Crossrefs

Cf. A023855.

Programs

  • Maple
    a:=n->sum((-1)^(r+1)*(n-r)*r,r=1..floor(n/2)): seq(a(n),n=2..70); # Emeric Deutsch, Aug 08 2005
  • Mathematica
    CoefficientList[Series[(2 x^3 - x^2 + 1)/((x - 1)^2 (x^2 + 1)^3), {x, 0, 70}], x] (* Vincenzo Librandi, Oct 30 2014 *)
    LinearRecurrence[{2,-4,6,-6,6,-4,2,-1},{1,2,-1,-2,6,8,-6,-8},70] (* Harvey P. Dale, Apr 04 2020 *)
  • PARI
    Vec(x^2*(2*x^3-x^2+1)/((x-1)^2*(x^2+1)^3) + O(x^100)) \\ Colin Barker, Oct 30 2014

Formula

a(2n) = (1/2)n-(-1)^n*(1/2)n^2; a(2n-1) = (1/2)n-(1/4)+(-1)^n*(1/4)(2n^2-2n+1). - Emeric Deutsch, Aug 08 2005
a(n) = (-1)^((2*n-5+(-1)^n)/4)*(2*n^2+1-(-1)^n+4*n*(-1)^((2*n-5+(-1)^n)/4))/16. - Luce ETIENNE, Oct 30 2014
G.f.: x^2*(2*x^3-x^2+1) / ((x-1)^2*(x^2+1)^3). - Colin Barker, Oct 30 2014

Extensions

Corrected and extended by Emeric Deutsch, Aug 08 2005

A337173 a(n) = Sum_{k=1..floor(n/2)} k^2 * (n-k)^2.

Original entry on oeis.org

0, 1, 4, 25, 52, 170, 280, 674, 984, 1979, 2684, 4795, 6188, 10164, 12656, 19524, 23664, 34773, 41268, 58333, 68068, 93214, 107272, 143078, 162760, 212303, 239148, 306047, 341852, 430312, 477152, 592008, 652256, 799017, 875364, 1060257, 1155732, 1385746, 1503736
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 28 2021

Keywords

Examples

			a(6) = 1^2*5^2 + 2^2*4^2 + 3^2*3^2 = 25 + 64 + 81 = 170.
		

Crossrefs

Cf. A023855.

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 3 x + 16 x^2 + 12 x^3 + 23 x^4 + 5 x^5 + 4 x^6)/((1 - x)^6 (1 + x)^5), {x, 0, 80}], x]

Formula

G.f.: x^2*(1+3*x+16*x^2+12*x^3+23*x^4+5*x^5+4*x^6)/((1-x)^6*(1+x)^5).
a(n) = (2*n-1+(-1)^n)*(2*n+3+(-1)^n)*(16*n^3-n^2+10*n-4-(n^2+6*n+4)*(-1)^n)/3840.
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) - 10*a(n-4) + 10*a(n-5) + 10*a(n-6) - 10*a(n-7) - 5*a(n-8) + 5*a(n-9) + a(n-10) - a(n-11).

A345026 Total area of all i X j rectangles where i and j are the final digits of positive integers r and s such that r + s = n.

Original entry on oeis.org

0, 1, 2, 7, 10, 22, 28, 50, 60, 95, 100, 131, 122, 152, 130, 162, 128, 165, 120, 165, 200, 226, 242, 252, 250, 247, 228, 215, 180, 260, 300, 356, 362, 397, 370, 387, 328, 330, 240, 330, 400, 451, 482, 497, 490, 472, 428, 380, 300, 425, 500, 581, 602, 642, 610, 612, 528, 495, 360
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 06 2021

Keywords

Examples

			a(20) = 165; There are 10 ways to write 20 as the sum of two positive integers: (19,1), (18,2), (17,3), (16,4), (15,5), (14,6), (13,7), (12,8), (11,9), and (10,10). Using the final digits from each pair as the side lengths of the rectangles, the combined area is 9*1 + 8*2 + 7*3 + 6*4 + 5*5 + 4*6 + 3+7 + 2*8 + 1*9 + 0*0 = 165.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Mod[k, 10]*Mod[n - k, 10], {k, Floor[n/2]}], {n, 60}]

Formula

a(n) = Sum_{k=1..floor(n/2)} (k mod 10) * ((n-k) mod 10).
Previous Showing 11-17 of 17 results.