cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A379303 Number of strict integer partitions of n with a unique composite part.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 3, 6, 6, 8, 10, 10, 13, 15, 17, 20, 22, 24, 28, 31, 36, 40, 44, 50, 55, 62, 70, 75, 83, 89, 97, 108, 115, 128, 136, 146, 161, 172, 188, 203, 215, 233, 249, 269, 291, 309, 331, 353, 376, 405, 433, 459, 490, 518, 554, 592, 629, 670, 705
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2024

Keywords

Examples

			The a(4) = 1 through a(11) = 8 partitions:
  (4)  (4,1)  (6)    (4,3)    (8)      (9)      (10)       (6,5)
              (4,2)  (6,1)    (6,2)    (5,4)    (8,2)      (7,4)
                     (4,2,1)  (4,3,1)  (6,3)    (9,1)      (8,3)
                                       (8,1)    (5,4,1)    (9,2)
                                       (4,3,2)  (6,3,1)    (10,1)
                                       (6,2,1)  (4,3,2,1)  (5,4,2)
                                                           (6,3,2)
                                                           (8,2,1)
		

Crossrefs

If no parts are composite we have A036497, non-strict A034891 (ranks A302540).
If all parts are composite we have A204389, non-strict A023895 (ranks A320629).
The non-strict version is A379302, ranks A379301 (positions of 1 in A379300).
For a unique prime we have A379305, non-strict A379304 (ranks A331915).
A000040 lists the prime numbers, differences A001223.
A000041 counts integer partitions, strict A000009.
A002808 lists the composite numbers, nonprimes A018252.
A066247 is the characteristic function for the composite numbers.
A377033 gives k-th differences of composite numbers, see A073445, A377034-A377037.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,_?CompositeQ]==1&]],{n,0,30}]

A379306 Number of squarefree prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 0, 3, 2, 2, 1, 3, 1, 1, 2, 4, 1, 3, 0, 3, 1, 2, 0, 4, 2, 2, 3, 2, 1, 3, 1, 5, 2, 2, 1, 4, 0, 1, 2, 4, 1, 2, 1, 3, 3, 1, 1, 5, 0, 3, 2, 3, 0, 4, 2, 3, 1, 2, 1, 4, 0, 2, 2, 6, 2, 3, 1, 3, 1, 2, 0, 5, 1, 1, 3, 2, 1, 3, 1, 5, 4, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 25 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 39 are {2,6}, so a(39) = 2.
The prime indices of 70 are {1,3,4}, so a(70) = 2.
The prime indices of 98 are {1,4,4}, so a(98) = 1.
The prime indices of 294 are {1,2,4,4}, a(294) = 2.
The prime indices of 1911 are {2,4,4,6}, so a(1911) = 2.
The prime indices of 2548 are {1,1,4,4,6}, so a(2548) = 3.
		

Crossrefs

Positions of first appearances are A000079.
Positions of zero are A379307, counted by A114374 (strict A256012).
Positions of one are A379316, counted by A379308 (strict A379309).
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061398 counts squarefree numbers between primes, zeros A068360.
A377038 gives k-th differences of squarefree numbers.
Other counts of prime indices:
- A087436 postpositive, see A038550.
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379310 nonsquarefree, see A302478.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[prix[n],SquareFreeQ]],{n,100}]

Formula

Totally additive with a(prime(k)) = A008966(k).

A379317 Positive integers with a unique even prime index.

Original entry on oeis.org

3, 6, 7, 12, 13, 14, 15, 19, 24, 26, 28, 29, 30, 33, 35, 37, 38, 43, 48, 51, 52, 53, 56, 58, 60, 61, 65, 66, 69, 70, 71, 74, 75, 76, 77, 79, 86, 89, 93, 95, 96, 101, 102, 104, 106, 107, 112, 113, 116, 119, 120, 122, 123, 130, 131, 132, 138, 139, 140, 141, 142
Offset: 1

Views

Author

Gus Wiseman, Dec 29 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
   3: {2}
   6: {1,2}
   7: {4}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  19: {8}
  24: {1,1,1,2}
  26: {1,6}
  28: {1,1,4}
  29: {10}
  30: {1,2,3}
  33: {2,5}
  35: {3,4}
  37: {12}
  38: {1,8}
  43: {14}
  48: {1,1,1,1,2}
		

Crossrefs

Partitions of this type are counted by A038348 (strict A096911).
For all even parts we have A066207, counted by A035363 (strict A000700).
For no even parts we have A066208, counted by A000009 (strict A035457).
Positions of 1 in A257992.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Select[prix[#],EvenQ]]==1&]

A353188 Number of partitions of n that contain at least one composite part.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 3, 4, 8, 12, 19, 27, 41, 56, 80, 109, 150, 199, 268, 350, 461, 596, 771, 984, 1258, 1589, 2007, 2514, 3145, 3905, 4846, 5973, 7356, 9010, 11020, 13418, 16315, 19756, 23890, 28788, 34639, 41548, 49767, 59441, 70899, 84354, 100221, 118803, 140645, 166153, 196035, 230853, 271512
Offset: 0

Views

Author

Omar E. Pol, Jun 22 2022

Keywords

Examples

			For n = 6 the partitions of 6 that contain at least one composite parts are [6], [4, 2] and [4, 1, 1]. There are three of these partitions so a(6) = 3.
		

Crossrefs

Programs

  • PARI
    a(n) = my(nb=0); forpart(p=n, if (#select(x->((x>1) && !isprime(x)), Vec(p)) >=1, nb++);); nb; \\ Michel Marcus, Jun 23 2022

Formula

a(n) = A000041(n) - A034891(n).

A132456 Number of partitions of n into composite parts such that succeeding parts have a common prime factor.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 2, 1, 2, 0, 4, 0, 4, 2, 7, 0, 9, 1, 12, 4, 14, 1, 23, 4, 24, 9, 35, 3, 46, 7, 56, 18, 68, 14, 99, 16, 107, 36, 145, 24, 186, 39, 219, 72, 270, 56, 361, 84, 408, 134, 514, 117, 655, 173, 761, 244, 926, 238, 1194, 312, 1347, 458, 1669, 458, 2073, 588, 2389
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 22 2007

Keywords

Comments

a(n) <= A023895(n).

Examples

			a(19) = #{9+6+4} = 1, A023895(19) = #{15+4, 10+9, 9+6+4} = 3;
a(20) = A023895(20) = 12;
a(21) = #{21, 15+6, 12+9, 9+6+6} = 4, A023895(21) = 6;
		

A280285 Number of partitions of n into odd composite numbers (A071904).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 2, 0, 0, 2, 1, 1, 3, 0, 0, 3, 1, 0, 4, 1, 1, 5, 1, 0, 5, 2, 2, 6, 2, 1, 8, 3, 1, 8, 3, 2, 11, 3, 2, 12, 5, 4, 13, 5, 3, 16, 8, 4, 18, 7, 6, 22, 9, 7, 24, 12, 9, 28, 12, 9, 33, 18, 11, 36, 18, 14, 45, 22, 16, 48, 26, 22, 54, 29, 23, 66, 38
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 31 2016

Keywords

Examples

			a(36) = 3 because we have [27, 9], [21, 15] and [9, 9, 9, 9].
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`(d>1 and d::odd and not isprime(d), d, 0),
           d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 31 2016
  • Mathematica
    nmax = 100; CoefficientList[Series[(1 - x)/(1 - x^2) Product[(1 - x^(2 k)) (1 - x^Prime[k])/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: ((1 - x)/(1 - x^2))*Product_{k>=1} (1 - x^(2*k))*(1 - x^prime(k))/(1 - x^k).

A379313 Positive integers whose prime indices are not all composite.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2024

Keywords

Comments

Or, positive integers whose prime indices include at least one 1 or prime number.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     2: {1}
     3: {2}
     4: {1,1}
     5: {3}
     6: {1,2}
     8: {1,1,1}
     9: {2,2}
    10: {1,3}
    11: {5}
    12: {1,1,2}
    14: {1,4}
    15: {2,3}
    16: {1,1,1,1}
    17: {7}
    18: {1,2,2}
    20: {1,1,3}
    21: {2,4}
    22: {1,5}
    24: {1,1,1,2}
		

Crossrefs

Partitions of this type are counted by A000041 - A023895.
The "old" primes are listed by A008578.
For no composite parts we have A302540, counted by A034891 (strict A036497).
The complement is A320629, counted by A023895 (strict A204389).
For a unique prime we have A331915, counted by A379304 (strict A379305).
Positions of nonzeros in A379311.
For a unique 1 or prime we have A379312, counted by A379314 (strict A379315).
A000040 lists the prime numbers, differences A001223.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A080339 is the characteristic function for the old prime numbers.
A376682 gives k-th differences of old prime numbers, see A030016, A075526.
A377033 gives k-th differences of composite numbers, see A073445, A377034.
Other counts of prime indices:
- A330944 nonprime, see A002095, A096258, A320628, A330945.
- A379306 squarefree, see A302478, A379308, A379309, A379316.
- A379310 nonsquarefree, see A114374, A256012, A379307.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!And@@CompositeQ/@prix[#]&]

A280287 Number of partitions of n into distinct odd composite numbers (A071904).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 2, 0, 0, 1, 1, 0, 2, 0, 1, 2, 1, 0, 3, 2, 1, 2, 1, 0, 3, 2, 1, 3, 2, 1, 5, 2, 1, 4, 3, 2, 4, 2, 1, 6, 4, 2, 6, 4, 3, 7, 4, 3, 6, 5, 4, 9, 5, 4, 10, 8, 4, 10, 6, 6, 12, 9, 5, 13, 9, 8, 14, 11, 7, 17, 13, 9, 16, 12, 11, 21
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 31 2016

Keywords

Examples

			a(48) = 3 because we have [39, 9], [33, 15] and [27, 21].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[(1 + x^2)/(1 + x) Product[(1 + x^k)/((1 + x^(2 k)) (1 + x^Prime[k])), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: ((1 + x^2)/(1 + x))*Product_{k>=1} (1 + x^k)/((1 + x^(2*k))*(1 + x^prime(k))).

A280544 Expansion of 1/(1 - Sum_{k>=2} (1 - floor(2/d(k)))*x^k), where d(k) is the number of divisors (A000005).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 2, 1, 3, 0, 5, 2, 8, 3, 13, 5, 22, 10, 34, 18, 58, 31, 94, 57, 153, 99, 254, 172, 417, 302, 685, 523, 1136, 901, 1872, 1557, 3097, 2673, 5133, 4577, 8505, 7843, 14109, 13380, 23440, 22816, 38953, 38855, 64789, 66053, 107871, 112190, 179664, 190369, 299478, 322683, 499501, 546548
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 05 2017

Keywords

Comments

Number of compositions (ordered partitions) of n into composite parts (A002808).

Examples

			a(10) = 3 because we have [10], [6, 4] and [4, 6].
		

Crossrefs

Programs

  • Mathematica
    nmax = 59; CoefficientList[Series[1/(1 - Sum[(1 - Floor[2/DivisorSigma[0, k]]) x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
  • PARI
    x='x+O('x^60); Vec(1/(1 - sum(k=2, 59, (1 - 2\numdiv(k))*x^k))) \\ Indranil Ghosh, Apr 03 2017

Formula

G.f.: 1/(1 - Sum_{k>=2} (1 - floor(2/d(k)))*x^k).

A303663 Expansion of (1/(1 - x))*Product_{k>=1} (1 - x^prime(k))/(1 - x^k).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 11, 14, 19, 25, 33, 41, 53, 66, 83, 102, 128, 156, 193, 233, 285, 343, 416, 495, 597, 710, 849, 1003, 1194, 1404, 1662, 1946, 2291, 2675, 3137, 3646, 4260, 4939, 5744, 6637, 7697, 8868, 10250, 11778, 13570, 15558, 17877, 20437, 23423, 26727, 30550, 34781, 39669, 45068, 51287, 58157
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 28 2018

Keywords

Comments

Partial sums of A002095.
Number of partitions of n into nonprime parts if there are two kinds of 1's.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, n+1,
          b(n, i-1)+`if`(isprime(i), 0, b(n-i, min(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Apr 28 2018
  • Mathematica
    nmax = 55; CoefficientList[Series[1/(1 - x) Product[(1 - x^Prime[k])/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Previous Showing 21-30 of 31 results. Next