cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 166 results. Next

A301590 Primes p such that there are no other solutions to A023900(x) = A023900(p) than a power of p.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 19, 23, 29, 31, 43, 47, 53, 59, 67, 71, 79, 83, 101, 103, 107, 127, 131, 137, 139, 149, 151, 163, 167, 173, 179, 191, 197, 199, 211, 223, 227, 229, 239, 251, 257, 263, 269, 271, 283, 293, 307, 311, 317, 331, 347, 359, 367, 373, 379, 383, 389
Offset: 1

Views

Author

Michel Marcus, Mar 24 2018

Keywords

Comments

In the definition, A023900(p) = 1-p. One has sign(A023900(n)) = (-1)^A001221(n), so a different solution x can only exist if x has at least 3 distinct prime factors. The smallest number of the form p*q*r such that (p-1)*(q-1)*(r-1) = P-1 for primes p, q, r, P is 2*3*7 = 42, eliminating P = 13 = A301591(1) from this sequence. This is the case whenever (P+1)/2 = p > 3 is a prime (in A005382), whence P-1 = (2-1)*(3-1)*(p-1), which eliminates all P > 5 in A005383 from this sequence. - M. F. Hasler, Aug 14 2021

Examples

			2 is a term because there are no other solutions to A023900(x) = A023900(2) = -1 than other powers of 2.
13 is not a term because A023900(42) = -12 = A023900(13). Similarly, no P > 5 in A005383 is a term because A023900(P) = 1-P = (1-2)*(1-3)*(1-p) = A023900(2*3*p) with p = (P+1)/2. - _M. F. Hasler_, Aug 14 2021
		

Crossrefs

Complement (within the primes) of A301591, which has A005383 \ {3, 5} as a subsequence. Appears to have A079151 \ {13} as subsequence.

Programs

  • PARI
    f(n) = sumdivmult(n, d, d*moebius(d)); /* A023900 */
    isok(p, vp) = {for (k=p+1, p^2-1, if (f(k) == vp, return (0)); ); return (1); }
    lista(nn) = {forprime(p=2, nn, vp = f(p); if (isok(p, vp), print1(p, ", ")); ); }
    
  • PARI
    select( {is_A301590(p)=!forcomposite(k=p+1, p^2-1, A023900(k)!=1-p|| return)&& isprime(p)}, primes([1,399])) \\ M. F. Hasler, Aug 14 2021

A306146 Numbers k such that A000010(A023900(k)) = A023900(A000010(k)).

Original entry on oeis.org

1, 14, 22, 28, 44, 46, 56, 75, 88, 92, 94, 112, 118, 166, 176, 184, 188, 214, 224, 236, 332, 334, 352, 358, 368, 375, 376, 422, 428, 448, 454, 472, 526, 639, 662, 664, 668, 694, 704, 716, 718, 736, 752, 766, 844, 856, 867, 896, 908, 926, 934, 944, 958, 1006, 1052, 1075, 1094, 1126, 1142, 1174, 1179, 1324
Offset: 1

Views

Author

Torlach Rush, Aug 11 2018

Keywords

Comments

No term is a product of an odd number of distinct prime factors (because then A023900 is negative, i.e., contains no terms from A030230).
For known terms:
- a(n) is nonsquarefree iff A000010(n) is nonsquarefree.
- If a(n) is squarefree then A000010(n) and A023900(n) are both squarefree.

Examples

			75 is a term because A000010(A023900(75)) = A023900(A000010(75)) = 4.
		

Crossrefs

Programs

  • Maple
    isA306146 := proc(n)
        local a239 ;
        a239 := A023900(n) ;
        if a239 >= 1 then
            simplify( numtheory[phi](a239) = A023900(numtheory[phi](n)) );
        else
            false;
        end if;
    end proc:
    for n from 1 to 1000 do
        if isA306146(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Feb 14 2019
  • Mathematica
    f[p_, e_] := 1 - p; d[1] = 1; d[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[1324],(d1 = d[#]) > 0 && d[EulerPhi[#]] == EulerPhi[d1] &] (* Amiram Eldar, Feb 19 2020 *)
  • PARI
    a023900(n) = sumdivmult(n, d, d*moebius(d))
    is(n) = sdm = a023900(n); if(sdm < 0, return(0), sdmphi = a023900(eulerphi(n)); eulerphi(sdm) == sdmphi) \\ David A. Corneth, Aug 17 2018

A323404 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = [A003557(n), A023900(n), A063994(n)].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 35, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 76, 92
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Comments

For all i, j: a(i) = a(j) => A247074(i) = A247074(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };
    A023900(n) = sumdivmult(n, d, d*moebius(d)); \\ From A023900
    A063994(n) = { my(f=factor(n)[, 1]); prod(i=1, #f, gcd(f[i]-1, n-1)); }; \\ From A063994
    Aux323404(n) = if(1,[A003557(n), A023900(n), A063994(n)]);
    v323404 = rgs_transform(vector(up_to, n, Aux323404(n)));
    A323404(n) = v323404[n];

A297381 Numerator of -A023900(n)/2.

Original entry on oeis.org

-1, 1, 1, 1, 2, -1, 3, 1, 1, -2, 5, -1, 6, -3, -4, 1, 8, -1, 9, -2, -6, -5, 11, -1, 2, -6, 1, -3, 14, 4, 15, 1, -10, -8, -12, -1, 18, -9, -12, -2, 20, 6, 21, -5, -4, -11, 23, -1, 3, -2, -16, -6, 26, -1, -20, -3, -18, -14, 29, 4, 30, -15, -6, 1, -24, 10, 33, -8, -22, 12, 35, -1, 36, -18, -4, -9, -30, 12, 39, -2, 1, -20, 41, 6, -32, -21, -28, -5
Offset: 1

Views

Author

Mats Granvik, Dec 29 2017

Keywords

Crossrefs

Cf. A023900, A297382 (denominators).

Programs

  • Mathematica
    Clear[n, s, nn]; nn = 64; Numerator[Table[Limit[Zeta[s]*Total[MoebiusMu[Divisors[n]]/Divisors[n]^(s - 1)], s -> 0], {n, 1, nn}]]
  • PARI
    a(n) = numerator(-sumdiv(n, d, d*moebius(d))/2) \\ Iain Fox, Dec 29 2017
    
  • PARI
    A297381(n) = numerator(-(1/2)*factorback(apply(p -> 1-p, factor(n)[, 1]))); \\ Antti Karttunen, Sep 30 2018

Formula

a(n) = numerator of -A023900(n)/2.
a(n) = numerator of lim_{s->0} zeta(s)*Sum_{d|n} A008683(d)/d^(s-1).
a(n) = numerator of lim_{N->infinity} (1/N)*Sum_{m=1..N} Sum_{k=1..m} A191898(n, k) for n > 1.
a(k) = numerators of lim_{N->infinity} (1/N)*Sum_{m=1..N} Sum_{n=1..m} A191898(n, k) for k > 1.

Extensions

More terms from Antti Karttunen, Sep 30 2018

A301374 Values of A023900 which occur only at indices which are powers of a prime.

Original entry on oeis.org

-1, -2, -4, -6, -10, -16, -18, -22, -28, -30, -42, -46, -52, -58, -66, -70, -78, -82, -100, -102, -106, -126, -130, -136, -138, -148, -150, -162, -166, -172, -178, -190, -196, -198, -210, -222, -226, -228, -238, -250, -256, -262, -268, -270, -282, -292, -306
Offset: 1

Views

Author

Torlach Rush, Mar 19 2018

Keywords

Comments

Terms are equal to A023900(p) = A023900(p^2) = A023900(p^3) = ... with p prime, but is never equal to A023900(m*p) with m not a power of p. [Corrected by M. F. Hasler, Sep 01 2021]
abs(a(n)) + 1 is prime (A301590).
For n > 1, if and only if n can't be factored into 2*m factors, m > 0, distinct factors f > 1 where f + 1 is prime then -n is a term. - David A. Corneth, Mar 25 2018
The values are of the form a(n) = 1 - p with prime p = A301590(n). These are exactly the values A023900(x) = 1 - p occurring only if x = p^j for some j >= 1. (See counterexample for p = 13 in EXAMPLE section.) - M. F. Hasler, Sep 01 2021

Examples

			a(1) = -1 = A023900(2^m), m > 0.
a(2) = -2 = A023900(3^m), m > 0.
a(3) = -4 = A023900(5^m), m > 0.
a(4) = -6 = A023900(7^m), m > 0.
a(5) = -10 = A023900(11^m), m > 0.
a(6) = -16 = A023900(17^m), m > 0.
A023900(13) = -12 is not a term as A023900(42) = -12, and 42 is the product of three prime factors.
From _David A. Corneth_, Mar 25 2018: (Start)
10 can't be factored in an even number of distinct factors f > 1 such that f + 1 is prime, so -10 is in the sequence.
12 can be factored in an even number of distinct factors f > 1; 12 = 2 * 6 and both 2 + 1 and 6 + 1 are prime, hence -12 is not a term. (End)
		

Crossrefs

Programs

  • Mathematica
    Keys@ Select[Union /@ PrimeNu@ PositionIndex@ Array[DivisorSum[#, # MoebiusMu[#] &] &, 310], # == {1} &] (* Michael De Vlieger, Mar 26 2018 *)
  • PARI
    f(n) = sumdivmult(n, d, d*moebius(d));
    isok(p, vp) = {for (k=p+1, p^2-1, if (f(k) == vp, return (0));); return (1);}
    lista(nn) = {forprime(p=2, nn, vp = f(p); if (isok(p, vp), print1(vp, ", ")););} \\ Michel Marcus, Mar 23 2018

A331178 Number of values of k, 1 <= k <= n, with A023900(k) = A023900(n), where A023900 is Dirichlet inverse of Euler totient function phi.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 2, 2, 3, 2, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 2, 3, 1, 2, 1, 2, 2, 1, 1, 6, 2, 4, 1, 3, 1, 7, 1, 3, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 1, 2, 1, 1, 1, 8, 1, 2, 3, 2, 1, 2, 1, 5, 4, 2, 1, 3, 1, 1, 1, 3, 1, 3, 1, 2, 2, 1, 2, 9, 1, 4, 2, 6, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2020

Keywords

Comments

Ordinal transform of A023900.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A023900(n) = factorback(apply(p -> 1-p, factor(n)[, 1]));
    v331178 = ordinal_transform(vector(up_to, n, A023900(n)));
    A331178(n) = v331178[n];

A340198 Dirichlet inverse of sequence f(n) = A319340(n)-1 = (A000010(n) + A023900(n) - 1), where A000010 is Euler Totient function phi, and A023900 is its Dirichlet inverse.

Original entry on oeis.org

1, 1, 1, 1, 1, -1, 1, -1, -2, -5, 1, -8, 1, -9, -13, -9, 1, -16, 1, -22, -21, -17, 1, -28, -14, -21, -20, -36, 1, -43, 1, -31, -37, -29, -45, -49, 1, -33, -45, -62, 1, -67, 1, -64, -64, -41, 1, -69, -34, -64, -61, -78, 1, -68, -77, -96, -69, -53, 1, -88, 1, -57, -96, -79, -93, -115, 1, -106, -85, -123, 1, -95, 1, -69
Offset: 1

Views

Author

Antti Karttunen, Jan 05 2021

Keywords

Comments

Conversely, the Dirichlet inverse of this sequence yields a sequence which is one less than A319340, i.e., pointwise sum s(n) = A109606(n) + A023900(n).
a(9796) = 0 is the only zero among the first 2^22 terms.

Crossrefs

Programs

  • PARI
    A023900(n) = factorback(apply(p -> 1-p, factor(n)[, 1]));
    A319340(n) = (eulerphi(n)+A023900(n));
    A340198(n) = if(1==n,1,-sumdiv(n,d,if(dA319340(n/d)-1)*A340198(d),0)));

Formula

a(1) = 1, for n > 1, a(n) = -Sum_{d|n, dA319340(n/d)-1) * a(d).

A297382 Denominator of -A023900(n)/2.

Original entry on oeis.org

2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Mats Granvik, Dec 29 2017

Keywords

Comments

Also denominator of A173557(n)/2. a(n) = 2 iff n is a power of 2, 1 otherwise. - Antti Karttunen, Sep 30 2018

Crossrefs

Cf. A297381 (numerators).
One more than A209229.

Programs

  • Mathematica
    Clear[n, s, nn]; nn = 64; Denominator[Table[Limit[Zeta[s]*Total[MoebiusMu[Divisors[n]]/Divisors[n]^(s - 1)], s -> 0], {n, 1, nn}]]
  • PARI
    A297382(n) = denominator(-(1/2)*factorback(apply(p -> 1-p, factor(n)[, 1]))); \\ Antti Karttunen, Sep 30 2018

Formula

a(n) = denominator of -A023900(n)/2.
a(n) = 1 + A209229(n). - Antti Karttunen, Sep 30 2018
a(n) = A014963(2*n). - Ridouane Oudra, Jul 03 2025

Extensions

More terms from Antti Karttunen, Sep 30 2018

A328583 a(n) = A023900(A276086(n)).

Original entry on oeis.org

1, -1, -2, 2, -2, 2, -4, 4, 8, -8, 8, -8, -4, 4, 8, -8, 8, -8, -4, 4, 8, -8, 8, -8, -4, 4, 8, -8, 8, -8, -6, 6, 12, -12, 12, -12, 24, -24, -48, 48, -48, 48, 24, -24, -48, 48, -48, 48, 24, -24, -48, 48, -48, 48, 24, -24, -48, 48, -48, 48, -6, 6, 12, -12, 12, -12, 24, -24, -48, 48, -48, 48, 24, -24, -48, 48, -48, 48, 24, -24
Offset: 0

Views

Author

Antti Karttunen, Oct 21 2019

Keywords

Crossrefs

Programs

  • PARI
    A328583(n) = { my(m=1, p=2); while(n, m *= (1-p)^!!(n%p); n = n\p; p = nextprime(1+p)); (m); };

Formula

a(n) = A023900(A276086(n)).
abs(a(n)) = A324650(n) / A328572(n).

A366450 a(n) = Sum_{k=1..n} A366362(n,k)*A023900(k)/n.

Original entry on oeis.org

1, -2, -1, -4, 1, 2, -2, -8, -3, -2, 1, 4, 4, 4, -1, -16, -2, 6, 0, -4, 2, -2, -1, 8, 5, -8, -9, 8, 0, 2, 7, -32, -1, 4, -2, 12, 3, 0, -4, -8, -8, -4, -6, -4, -3, 2, 8, 16, -14, -10, 2, -16, -6, 18, 1, 16, 0, 0, 5, 4, 12, -14, 6, -64, 4, 2, -7, 8, 1, 4, -3, 24, 4, -6, -5, 0, -2, 8, -10, -16, -27, 16, -6, -8
Offset: 1

Views

Author

Mats Granvik, Oct 10 2023

Keywords

Comments

It appears that: a(A005117(n)) = A006571(A005117(n)), verified up to n = 98. But also a(76) = A006571(76), a(116) = A006571(116) and a(152) = A006571(152). 76 = 19*2^2, 116 = 29*2^2 and 152 = 19*2^3.

Crossrefs

Programs

  • Mathematica
    nn = 84; f = x^3 - x^2 - y^2 - y; g[n_] := DivisorSum[n, MoebiusMu[#] # &]; Monitor[Table[Sum[Sum[Sum[If[GCD[f, n] == k, 1, 0]*g[k]/n, {x, 1, n}], {y, 1, n}], {k, 1, n}], {n, 1, nn}], n]
  • PARI
    a(n) = sum(k=1, n, my(z=sumdivmult(k, d, d*moebius(d))); sum(y=1, n, sum(x=1, n, if (gcd(x^3 - x^2 - y^2 - y, n)==k, z/n)))); \\ Michel Marcus, Oct 10 2023

Formula

a(n) = Sum_{k=1..n} A366362(n,k)*A023900(k)/n.
Previous Showing 11-20 of 166 results. Next