cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A335035 Ordered perimeters of primitive integer triangles with two perpendicular medians.

Original entry on oeis.org

54, 70, 104, 154, 170, 216, 252, 266, 352, 368, 418, 442, 464, 594, 598, 620, 638, 720, 740, 748, 792, 810, 902, 952, 962, 988, 1054, 1102, 1118, 1134, 1148, 1170, 1216, 1274, 1316, 1376, 1426, 1484, 1512, 1564, 1568, 1598, 1600, 1638, 1702, 1710, 1802, 1836, 1862
Offset: 1

Views

Author

Bernard Schott, May 27 2020

Keywords

Comments

The study of these integer triangles that have two perpendicular medians was proposed in the problem of Concours Général in 2007 in France (see link).
If medians drawn from A and B are perpendicular in centroid G, then a^2 + b^2 = 5 * c^2 (see Maths Challenge picture in link).
All terms are even because each triple is composed of one even side and two odd sides.
For the corresponding primitive triples and miscellaneous properties, see A335034.

Examples

			a(1) = 13 + 19 + 22 = 54 with 19^2 + 22^2 = 5 * 13^2 = 845.
		

Crossrefs

Cf. A024364 (perimeters of primitive Pythagorean triangles).
Cf. A335034 (corresponding primitive triples), A335036 (smallest side), A335347 (middle side), A335348 (largest side), A335273 (even side).

Programs

  • PARI
    lista(nn) = {my(vm = List(), vt); for (u=1, nn, for (v=1, nn, if (gcd(u, v) == 1, vt = 0; if ((u/v > 3) && ((u-3*v) % 5), vt = [2*(u^2-u*v-v^2), u^2+4*u*v-v^2, u^2+v^2]); if ((u/v > 1) && (u/v < 2) && ((u-2*v) % 5), vt = [2*(u^2+u*v-v^2), -u^2+4*u*v+v^2, u^2+v^2]); if ((gcd(vt) == 1), listput(vm, vecsum(vt)));););); vecsort(vm);} \\ Michel Marcus, May 27 2020

Formula

a(n) = A335036(n) + A335347(n) + A335348(n).

A024408 Perimeters of more than one primitive Pythagorean triangle.

Original entry on oeis.org

1716, 2652, 3876, 3960, 4290, 5244, 5700, 5720, 6900, 6930, 8004, 8700, 9300, 9690, 10010, 10788, 11088, 12180, 12876, 12920, 13020, 13764, 14280, 15252, 15470, 15540, 15960, 16380, 17220, 17480, 18018, 18060, 18088, 18204, 19092, 19320, 20592, 20868
Offset: 1

Views

Author

Keywords

Comments

a(23) = 14280 is the first perimeter of 3 primitive Pythagorean triangles: {119, 7080, 7081}, {168, 7055, 7057} and {3255, 5032, 5993}. - Jean-François Alcover, Mar 14 2012

Examples

			a(1) = 1716 with precisely two primitive Pythagorean triangles (with increasing entries): {195, 748, 773} and {364, 627, 725}. From Ron Knott's link. This is the first example of the family of perimeters 12*b(k)*(b(k) + 2) with b(k) = A007528(k), for k >= 2. See the Bernstein link, p. 234, Theorem 5. a). - _Wolfdieter Lang_, Sep 24 2019
		

Crossrefs

A155177 Area ar/6 (divided by 6) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes.

Original entry on oeis.org

1, 5, 140, 385, 2870, 8555, 29370, 42925, 93665, 116795, 149226, 155155, 348551, 380380, 414090, 513590, 1229305, 1801800, 2567895, 2767905, 3873301, 3924830, 5053620, 6970150, 17090486, 18362930, 23396450, 31919165, 39336465, 41791750
Offset: 1

Views

Author

Keywords

Comments

p=1,q=2,a=3,b=4,c=5, ar=3*4/2=6, s=12-+1primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;s=a+b+c;ar=a*b/2;If[PrimeQ[s-1]&&PrimeQ[s+1],AppendTo[lst,ar/6]],{n,8!}];lst

A381008 Ordered perimeters of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1.

Original entry on oeis.org

56, 800, 12416, 197120, 3147776, 50339840, 805339136, 12885032960, 206158954496, 3298536980480, 52776566521856, 844424963686400, 13510799016329216, 216172782650654720, 3458764515968024576, 55340232229718589440, 885443715572418215936, 14167099448746374594560
Offset: 1

Views

Author

Robert C. Lyons, Feb 12 2025

Keywords

Comments

Proper subset of A024364.

Crossrefs

Cf. A024364.
Cf. A381005 (short legs), A381006 (long legs), A381007 (hypotenuses), A381009 (areas).

Programs

  • Magma
    [2^(4*n+1) + 2^(2*n+1) + 2^(4*n): n in [1..20]];
    
  • Mathematica
    A381008[n_] := #*(3*# + 2) & [4^n]; Array[A381008, 20] (* or *)
    LinearRecurrence[{20, -64}, {56, 800}, 20] (* Paolo Xausa, Feb 26 2025 *)
  • PARI
    a(n) = 2^(4*n+1) + 2^(2*n+1) + 2^(4*n)
    
  • Python
    def A381008(n): return (m:=1<<(n<<1))*(2+3*m) # Chai Wah Wu, Feb 13 2025

Formula

a(n) = A381005(n) + A381006(n) + A381007(n).
a(n) = 2^(4n+1) + 2^(2n+1) + 2^(4n).
G.f.: 8*(7 - 40*x)/((1 - 4*x)*(1 - 16*x)). - Stefano Spezia, Feb 13 2025

A155178 Numbers p of primitive Pythagorean triangles such that perimeters and products of 3 sides are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes, pr=a*b*c, pr-+1 are primes.

Original entry on oeis.org

1, 7916, 35882, 37816, 47491, 128429, 131830, 146471, 154799, 157579, 170219, 174964, 187544, 207829, 208039, 222887, 223142, 262502, 291544, 319825, 327602, 331627, 353857, 476681, 477659, 494207, 522025, 537454, 540682, 558161, 571670
Offset: 1

Views

Author

Keywords

Comments

p=1,q=2,a=3,b=4,c=5,s=12-+1 primes,pr=3*4*5=60-+1 primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;pr=a*b*c;If[PrimeQ[s-1]&&PrimeQ[s+1]&&PrimeQ[pr-1]&&PrimeQ[pr+1],AppendTo[lst,n]],{n,3*9!}];lst

A225951 Triangle for perimeters of primitive Pythagorean triangles.

Original entry on oeis.org

12, 0, 30, 40, 0, 56, 0, 70, 0, 90, 84, 0, 0, 0, 132, 0, 126, 0, 154, 0, 182, 144, 0, 176, 0, 208, 0, 240, 0, 198, 0, 234, 0, 0, 0, 306, 220, 0, 260, 0, 0, 0, 340, 0, 380, 0, 286, 0, 330, 0, 374, 0, 418, 0, 462, 312, 0, 0, 0, 408, 0, 456, 0, 0, 0, 552, 0, 390, 0, 442, 0, 494, 0, 546, 0, 598, 0, 650, 420, 0, 476, 0, 532, 0, 0, 0, 644, 0, 700, 0, 756
Offset: 2

Views

Author

Wolfdieter Lang, May 21 2013

Keywords

Comments

See the Hardy-Wright (Theorem 225, p. 190) and Niven-Zuckerman-Montgomery (Theorem 5.5, p. 232) references for primitive Pythagorean triangles.
Here a(n,m) = 0 for non-primitive Pythagorean triangles.
There is a one-to-one correspondence between the values n and m of this number triangle for which a(n,m) does not vanish and primitive solutions of x^2 + y^2 = z^2 with y even, namely x = n^2 - m^2, y = 2*n*m and z = n^2 + m^2. The mirror triangles with x even are not considered here. Therefore a(n,m) = (n^2 - m^2) + 2*n*m + (n^2 + m^2) = 2*n*(n+m) (for these solutions).
The number of non-vanishing entries in row n is A055034(n).
The sequence of the diagonal entries is 2*n*(2*n-1) = 2*A000384(n), n >= 2.
The ordered nonzero entries of this triangle gives A024364.
Note that all perimeters <= N will certainly be found if one consider all rows n = 2, 3, ..., floor((-1 + sqrt(2*N + 1))/2).
See also A070109(n) for the number of primitive Pythagorean triangles with perimeter n and leg y even.

Examples

			The triangle a(n,m) begins:
n\m   1    2   3    4    5    6    7    8    9   10   11
2:   12
3:    0   30
4:   40    0  56
5:    0   70   0   90
6:   84    0   0    0  132
7:    0  126   0  154    0  182
8:  144    0 176    0  208    0  240
9:    0  198   0  234    0    0    0  306
10: 220    0 260    0    0    0  340    0  380
11:   0  286   0  330    0  374    0  418    0  462
12: 312    0   0    0  408    0  456    0    0    0  552
...
The primitive triangle for (n,m) = (2,1) is (x,y,z) = (3,4,5), therefore, a(2,1) = 3 + 4 + 5 = 12.
The primitive triangle for (n,m) = (7,4) is (x,y,z) = (33,56,65), therefore, a(7,4) = 33 + 56 + 65 = 154.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.

Crossrefs

Cf. A024364 (nonzero, ordered), A225949 (leg sums), A222946 (hypotenuses), A000384 (half of the main diagonal), A070109.

Formula

a(n,m) = 2*n*(n+m) if n > m >= 1, gcd(n,m) = 1, and n and m are integers of opposite parity (i.e., (-1)^{n+m} = -1), otherwise a(n,m) = 0.

A155180 Short leg A of primitive Pythagorean triangles such that perimeters and products of 3 sides are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes, pr=a*b*c, pr-+1 are primes.

Original entry on oeis.org

3, 15833, 71765, 75633, 94983, 256859, 263661, 292943, 309599, 315159, 340439, 349929, 375089, 415659, 416079, 445775, 446285, 525005, 583089, 639651, 655205, 663255, 707715, 953363, 955319, 988415, 1044051, 1074909, 1081365, 1116323
Offset: 1

Views

Author

Keywords

Comments

p=1,q=2,a=3,b=4,c=5,s=12-+1 primes,pr=3*4*5=60-+1 primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;pr=a*b*c;If[PrimeQ[s-1]&&PrimeQ[s+1]&&PrimeQ[pr-1]&&PrimeQ[pr+1],AppendTo[lst,a]],{n,3*9!}];lst

A350038 Numbers that are the perimeter of a primitive 60-degree integer triangle.

Original entry on oeis.org

18, 20, 35, 36, 45, 56, 77, 84, 90, 104, 110, 120, 126, 135, 143, 170, 176, 182, 189, 198, 209, 210, 216, 221, 252, 260, 264, 266, 270, 272, 273, 297, 299, 323, 350, 351, 360, 368, 374, 378, 380, 390, 396, 425, 432, 437, 459, 462, 464, 468, 476, 494, 495, 506, 527, 551, 561, 570, 575, 585, 594, 608, 612
Offset: 1

Views

Author

Seiichi Manyama, Dec 10 2021

Keywords

Examples

			b(n) = Sum_{k=1..3} A264826(3*n+k-3).
c(n) = Sum_{k=1..3} A201223(3*n+k-3).
b(1) = c(1) = 3+7+8 = 18 = a(1).
b(2) = c(2) = 5+7+8 = 20 = a(2).
b(3) = c(5) = 5+19+21 = 45 = a(5).
b(4) = c(3) = 7+13+15 = 35 = a(3).
b(5) = c(9) = 7+37+40 = 84 = a(8).
b(6) = c(4) = 8+13+15 = 36 = a(4).
		

Crossrefs

Programs

  • Ruby
    def A(n)
      ary = []
      (1..n).each{|i|
        (i + 1..n).each{|j|
          if i.gcd(j) == 1 && (i - j) % 3 > 0
            x, y, z = j * j, i * j, i * i
            ary << 2 * x + 5 * y + 2 * z
            ary << 3 * x + 3 * y
          end
        }
      }
      ary
    end
    p A(20).uniq.sort[0..100]

A093507 Perimeter of primitive Pythagorean triangles sorted on hypotenuse A020882(n).

Original entry on oeis.org

12, 30, 40, 56, 70, 84, 90, 126, 132, 144, 154, 176, 198, 182, 208, 234, 220, 260, 240, 286, 330, 312, 306, 340, 374, 408, 390, 380, 442, 418, 456, 420, 476, 494, 532, 462, 510, 546, 570, 544, 608, 552, 598, 644, 672, 690, 646, 714, 736, 650, 700, 684, 782
Offset: 1

Views

Author

Lekraj Beedassy, May 14 2004

Keywords

Comments

For ordered perimeter of primitive Pythagorean triangle see A024364.

Formula

a(n)=2*A093508.

A105520 Sums of area and perimeter of Pythagorean triples, sorted in increasing order, including duplicates.

Original entry on oeis.org

18, 48, 60, 90, 100, 140, 144, 180, 210, 270, 280, 288, 294, 320, 360, 378, 448, 462, 480, 594, 600, 648, 660, 720, 728, 756, 858, 900, 900, 924, 980, 1008, 1008, 1078, 1080, 1120, 1170, 1210, 1260, 1344, 1496, 1530, 1530, 1568, 1584, 1584, 1680, 1700, 1728
Offset: 1

Views

Author

Alexandre Wajnberg, May 02 2005

Keywords

Examples

			a(28) = 900 = (18+80+82) + (18*80/2) for 18*18 + 80*80 = 82*82.
a(29) = 900 = (25+60+65) + (25*60/2) for 25*25 + 60*60 = 65*65.
a(32) = 1008 = (24+70+74) + (24*70/2) for 24*24 + 70*70 = 74*74.
a(33) = 1008 = (36+48+60) + (36*48/2) for 36*36 + 48*48 = 60*60.
		

Crossrefs

Programs

  • Mathematica
    L = {}; mx = 1728; Do[ Do[ If[ IntegerQ[z = Sqrt[x^2 + y^2]], v = x y/2 + x + y + z; If[v <= mx, AppendTo[L, v], Break[]]], {y, x-1}], {x, 4, 4 + (2 mx^2)^(1/3)}]; Sort@ L (* Giovanni Resta, Mar 16 2020 *)
  • Rexx
    T. = 0                        ;  S = ''
    do C = 1 to 999               ;  H = C*C
       do D = 1 to C              ;  I = D*D
          do E = 1 to D           ;  J = E*E
             if I + J < H   then  iterate E
             if I + J = H   then  do
                K = T.0 + 1       ;  T.0 = K
                P = C + D + E     ;  A = ( D * E ) / 2
                T.K = right( A + P, 6 )
                T.K = T.K '=' A '+' P '(' E '+' D '+' C ')'
             end
             leave E
          end E
       end D
    end C
    call KWIK 'T.' /* sort by A+P for area A and perimeter P */
    Y = 0
    do N = 1 to T.0 while length( S ) < 255
       X = word( T.N, 1 )         ;  say T.N
       if X <= Y   then  say 'dupe:' N - 1 N ':' Y X
       S = S || ', ' || X         ;  Y = X
    end N
    say substr( S, 3 )            /* Frank Ellermann, Mar 02 2020 */

Extensions

Corrected and extended by Frank Ellermann, Mar 02 2020
Previous Showing 11-20 of 32 results. Next