cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A357293 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} Stirling2(n,k*j).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 0, 1, 5, 0, 1, 0, 0, 3, 15, 0, 1, 0, 0, 1, 8, 52, 0, 1, 0, 0, 0, 6, 25, 203, 0, 1, 0, 0, 0, 1, 25, 97, 877, 0, 1, 0, 0, 0, 0, 10, 91, 434, 4140, 0, 1, 0, 0, 0, 0, 1, 65, 322, 2095, 21147, 0, 1, 0, 0, 0, 0, 0, 15, 350, 1232, 10707, 115975, 0, 1, 0, 0, 0, 0, 0, 1, 140, 1702, 5672, 58194, 678570, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 17 2022

Keywords

Examples

			Square array begins:
  1,   1,  1,  1,  1,  1, 1, ...
  0,   1,  0,  0,  0,  0, 0, ...
  0,   2,  1,  0,  0,  0, 0, ...
  0,   5,  3,  1,  0,  0, 0, ...
  0,  15,  8,  6,  1,  0, 0, ...
  0,  52, 25, 25, 10,  1, 0, ...
  0, 203, 97, 91, 65, 15, 1, ...
		

Crossrefs

Columns k=0-3 give: A000007, A000110, A024430, A143815.
Cf. A357119.

Programs

  • PARI
    T(n, k) = sum(j=0, n, stirling(n, k*j, 2));
    
  • PARI
    T(n, k) = if(k==0, 0^n, n!*polcoef(sum(j=0, n\k, (exp(x+x*O(x^n))-1)^(k*j)/(k*j)!), n));
    
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    T(n, k) = if(k==0, 0^n, my(w=exp(2*Pi*I/k)); round(sum(j=0, k-1, Bell_poly(n, w^j)))/k);

Formula

For k > 0, e.g.f. of column k: Sum_{j>=0} (exp(x)-1)^(k*j)/(k*j)!.
For k > 0, T(n,k) = ( Sum_{j=0..k-1} Bell_n(w^j) )/k, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/k).

A357649 Expansion of e.g.f. cosh( (exp(3*x) - 1)/3 ).

Original entry on oeis.org

1, 0, 1, 9, 64, 435, 3097, 24822, 232759, 2517345, 30070954, 382827225, 5110770205, 71421582024, 1049487311485, 16286699945853, 267145966335088, 4616924929100535, 83622792656855125, 1578916985654901366, 30957723637379211115, 628927539690331202661
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{m = 20}, Range[0, m]! * CoefficientList[Series[Cosh[(Exp[3*x] - 1)/3], {x, 0, m}], x]] (* Amiram Eldar, Oct 07 2022 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(cosh((exp(3*x)-1)/3)))
    
  • PARI
    a(n) = sum(k=0, n\2, 3^(n-2*k)*stirling(n, 2*k, 2));

Formula

a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k) * Stirling2(n,2*k).
a(n) ~ 3^n * exp(n/LambertW(3*n) - n - 1/3) * n^n / (LambertW(3*n)^n * 2*sqrt(1 + LambertW(3*n))). - Vaclav Kotesovec, Oct 07 2022

A121869 Monthly Problem 10791, first expression.

Original entry on oeis.org

-1, 1, 0, -5, -15, 104, 1827, 7893, -207000, -5646249, -47897675, 1479282600, 74711288407, 1396956334921, -21032523700672, -2719998717430365, -104158663871982343, -715846242343471272, 189941380201812700699, 14820744271258596866013, 507768838531742620183176
Offset: 0

Views

Author

N. J. A. Sloane, Sep 05 2006

Keywords

Crossrefs

Programs

  • GAP
    List([0..25], n-> (-1)*Sum([0..n], k-> Stirling2(n,k)) *Sum([0..n], k-> (-1)^k*Stirling2(n,k)) ); # G. C. Greubel, Oct 08 2019
  • Magma
    a:= func< n | (-1)*(&+[StirlingSecond(n,k): k in [0..n]])*(&+[ (-1)^k*StirlingSecond(n,k): k in [0..n]]) >;
    [a(n): n in [0..25]]; // G. C. Greubel, Oct 08 2019
    
  • Maple
    with(combinat): seq(-bell(n)*BellB(n, -1), n = 0..25); # G. C. Greubel, Oct 08 2019
  • Mathematica
    Table[-BellB[n]*BellB[n, -1], {n,0,25}] (* G. C. Greubel, Oct 08 2019 *)
  • PARI
    a(n) = (-1)*sum(k=0,n, stirling(n,k,2))*sum(k=0,n, (-1)^k*stirling(n,k,2));
    vector(25, n, a(n-1)) \\ G. C. Greubel, Oct 08 2019
    
  • Sage
    [ -sum(stirling_number2(n, k) for k in (0..n))*sum((-1)^k* stirling_number2(n,k) for k in (0..n)) for n in (0..25)] # G. C. Greubel, Oct 08 2019
    

Formula

a(n) = A024429(n)^2 - A024430(n)^2.

A357650 Expansion of e.g.f. cosh( (exp(4*x) - 1)/4 ).

Original entry on oeis.org

1, 0, 1, 12, 113, 1000, 8977, 86996, 959905, 12303888, 179038689, 2840696540, 47684181393, 835731314808, 15277172343409, 292597596283684, 5900038421042753, 125488177929542944, 2809541905807203009, 65903118624174027436, 1610968753088423886257
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{m = 20}, Range[0, m]! * CoefficientList[Series[Cosh[(Exp[4*x] - 1)/4], {x, 0, m}], x]] (* Amiram Eldar, Oct 07 2022 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(cosh((exp(4*x)-1)/4)))
    
  • PARI
    a(n) = sum(k=0, n\2, 4^(n-2*k)*stirling(n, 2*k, 2));

Formula

a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k) * Stirling2(n,2*k).
a(n) ~ 2^(2*n-1) * exp(n/LambertW(4*n) - n - 1/4) * n^n / (LambertW(4*n)^n * sqrt(1 + LambertW(4*n))). - Vaclav Kotesovec, Oct 07 2022

A357661 Expansion of e.g.f. cosh( (exp(2*x) - 1)/sqrt(2) ).

Original entry on oeis.org

1, 0, 2, 12, 60, 320, 2040, 15568, 133648, 1230336, 11962400, 123144384, 1349008320, 15731096576, 194349866880, 2527082917120, 34392647418112, 488243791183872, 7216792525799936, 110936087161801728, 1771199461131500544, 29324602146652307456
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Cosh[(Exp[2x]-1)/Sqrt[2]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 23 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); apply(round, Vec(serlaplace(cosh((exp(2*x)-1)/sqrt(2)))))
    
  • PARI
    a(n) = sum(k=0, n\2, 2^(n-k)*stirling(n, 2*k, 2));

Formula

a(n) = Sum_{k=0..floor(n/2)} 2^(n-k) * Stirling2(n,2*k).

A357662 Expansion of e.g.f. cosh( (exp(3*x) - 1)/sqrt(3) ).

Original entry on oeis.org

1, 0, 3, 27, 198, 1485, 12825, 132678, 1582497, 20603727, 284290560, 4132840239, 63571690485, 1038868740000, 18022911716439, 330305863479615, 6355242571945878, 127721845479277737, 2672729031195365949, 58142565625982730462, 1313557910179640120061
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); apply(round, Vec(serlaplace(cosh((exp(3*x)-1)/sqrt(3)))))
    
  • PARI
    a(n) = sum(k=0, n\2, 3^(n-k)*stirling(n, 2*k, 2));

Formula

a(n) = Sum_{k=0..floor(n/2)} 3^(n-k) * Stirling2(n,2*k).

A357663 Expansion of e.g.f. cosh( (exp(4*x) - 1)/2 ).

Original entry on oeis.org

1, 0, 4, 48, 464, 4480, 48448, 621824, 9320704, 154890240, 2746131456, 51237908480, 1007228375040, 20965557829632, 463091379159040, 10826828061147136, 266438312153120768, 6861616219559034880, 184128217520198123520, 5135753969867535941632
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Cosh[(Exp[4x]-1)/2],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 13 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(cosh((exp(4*x)-1)/2)))
    
  • PARI
    a(n) = sum(k=0, n\2, 4^(n-k)*stirling(n, 2*k, 2));

Formula

a(n) = Sum_{k=0..floor(n/2)} 4^(n-k) * Stirling2(n,2*k).

A357667 Expansion of e.g.f. cosh( 3 * (exp(x) - 1) ).

Original entry on oeis.org

1, 0, 9, 27, 144, 945, 6273, 44226, 339399, 2796795, 24387786, 223853355, 2159078445, 21827316888, 230536050165, 2536213188519, 28994911890048, 343806474384045, 4220933769308205, 53566838971016418, 701650841036287275, 9473067208871584407
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2022

Keywords

Crossrefs

Programs

  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(cosh(3*(exp(x)-1))))
    
  • PARI
    a(n) = sum(k=0, n\2, 9^k*stirling(n, 2*k, 2));
    
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = round((Bell_poly(n, 3)+Bell_poly(n, -3)))/2;

Formula

E.g.f.: cosh( 3 * (exp(x) - 1) ).
a(n) = Sum_{k=0..floor(n/2)} 9^k * Stirling2(n,2*k).
a(n) = ( Bell_n(3) + Bell_n(-3) )/2, where Bell_n(x) is n-th Bell polynomial.
a(n) = 1; a(n) = 9 * Sum_{k=0..n-1} binomial(n-1, k) * A357668(k).

A096648 Number of partitions of an n-set with odd number of even blocks.

Original entry on oeis.org

0, 1, 3, 7, 25, 106, 434, 2045, 10707, 57781, 338195, 2115664, 13796952, 95394573, 692462671, 5235101739, 41436754261, 341177640610, 2915100624274, 25866987547865, 237448494222575, 2252995117706961, 22078799199129799, 222971522853648704, 2319210969809731600
Offset: 1

Views

Author

Vladeta Jovovic, Aug 14 2004

Keywords

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1,
          0, add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1,
          irem(t+`if`(irem(i, 2)=0, j, 0), 2)), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=1..30);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n-i*j, i-1, Mod[t+If[Mod[i, 2] == 0, j, 0], 2]], {j, 0, n/i}]]]; a[n_] := b[n, n, 2]; Table[ a[n], {n, 1, 30}] (* Jean-François Alcover, May 13 2015, after Alois P. Heinz *)
    With[{nn=30},Rest[CoefficientList[Series[Exp[Sinh[x]]Sinh[Cosh[x]-1], {x,0,nn}],x] Range[0,nn]!]] (* Harvey P. Dale, Sep 03 2016 *)

Formula

E.g.f.: exp(sinh(x))*sinh(cosh(x)-1).
a(2*n) = A024429(2*n) and a(2*n+1) = A024430(2*n+1). - Jonathan Vos Post, Oct 19 2005
a(n) = sum{k=0..n, if(mod(n-k,2)=1, A048993(n,k), 0)}. - Paul Barry, May 19 2006

Extensions

More terms from Emeric Deutsch, Nov 16 2004

A121870 Monthly Problem 10791, second expression.

Original entry on oeis.org

1, 1, 2, 9, 61, 554, 6565, 96677, 1716730, 36072181, 881242577, 24674241834, 783024550969, 27896201305769, 1106485798248706, 48517267642373105, 2337333266369553253, 123040664089658462650, 7043260281573138384701, 436533086101058798529933
Offset: 0

Views

Author

N. J. A. Sloane, Sep 05 2006

Keywords

Crossrefs

Programs

  • GAP
    List([0..25], n-> (Sum([0..Int(n/2)], k-> Stirling2(n,2*k)*(-1)^(k)) )^2 + (Sum([0..Int(n/2)], k-> (-1)^k*Stirling2(n,2*k+1)))^2 ); # G. C. Greubel, Oct 08 2019
  • Magma
    C:= ComplexField(); a:= func< n | Round(Abs( (&+[I^k*StirlingSecond(n,k): k in [0..n]])^2 )) >;
    [a(n): n in [0..25]]; // G. C. Greubel, Oct 08 2019
    
  • Maple
    A121870a:= proc(a) local i, t:
    i:=1: t:=0: for i to 100 do t:=t+evalf((i^(a-1))*(I)^i/(i)!): od:
    RETURN(round(abs(t^2))):
    end: a:= A121870a(n);
    # Russell Walsmith, Apr 18 2008
    # Alternate:
    seq(abs(BellB(n,I))^2, n=0..30); # Robert Israel, Oct 15 2017
  • Mathematica
    Table[Abs[BellB[n, I]]^2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2017 *)
  • PARI
    a(n) = abs( (sum(k=0,n, I^k*stirling(n,k,2)))^2 );
    vector(25, n, a(n-1)) \\ G. C. Greubel, Oct 08 2019
    
  • Sage
    [abs( sum(I^k*stirling_number2(n,k) for k in (0..n))^2 ) for n in (0..25)] # G. C. Greubel, Oct 08 2019
    

Formula

a(n) = A121867(n)^2 + A121868(n)^2.
From Gary W. Adamson, Jul 22 2011: (Start)
sqrt(a(n)) = upper left term in M^n as to the modulus of a polar term; M = an infinite square production matrix in which a column of (i, i, i, ...) is appended to the right of Pascal's triangle, as follows (with i = sqrt(-1)):
1, i, 0, 0, 0, ...
1, 1, i, 0, 0, ...
1, 2, 1, i, 0, ...
1, 3, 3, 1, i, ...
... (End)
a(n) = |B_n(i)|^2, where B_n(x) is the n-th Bell polynomial, i = sqrt(-1) is the imaginary unit. - Vladimir Reshetnikov, Oct 15 2017
a(n) ~ (n*exp(-1 + Re(LambertW(i*n)) / Abs(LambertW(i*n))^2) / Abs(LambertW(i*n)))^(2*n) / Abs(1 + LambertW(i*n)), where i is the imaginary unit. - Vaclav Kotesovec, Jul 28 2021
Previous Showing 21-30 of 35 results. Next