cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 101 results. Next

A126557 Primes in A126556.

Original entry on oeis.org

174737, 224327, 433813, 541447, 787243, 969667, 980081, 1080787, 1286581, 1372979, 1534513, 1567037, 1570649, 1577189, 1659673, 1726993, 1931291, 2242883, 2282041, 2415557, 2460827, 3162503, 3711047, 4090787, 4450373
Offset: 1

Views

Author

Artur Jasinski, Dec 27 2006

Keywords

Comments

Prime interprimes of third order.
Primes that are the arithmetic mean of two consecutive prime interprimes of second order; primes of the form (A126555(k)+A126555(k+1))/2.

Crossrefs

Cf. A006562 (balanced primes), A024675 (interprimes), A126554 (interprimes of second order), A126555 (prime interprimes of second order), A126556 (interprimes of third order).

Programs

  • PARI
    {m=5000000;a=0;g=0;p=2;q=3;r=5;while(r<=m,if((p+r)/2==q,if(a>0,b=(a+q)/2;if(isprime(b),if(g>0,if(isprime(h=(g+b)/2),print1(h,",")));g=b));a=q);p=q;q=r; r=nextprime(r+1))} \\ Klaus Brockhaus, Jan 11 2007

Extensions

Edited and extended by Klaus Brockhaus, Jan 11 2007

A129752 Triangular numbers t which are average of two consecutive primes p and p+4.

Original entry on oeis.org

15, 21, 45, 105, 231, 351, 465, 741, 861, 1431, 1485, 3081, 3321, 4005, 7875, 10731, 11175, 11781, 13695, 14535, 17205, 17391, 18915, 21321, 22155, 23871, 30135, 33411, 36585, 39621, 42195, 51681, 58311, 80601, 90525, 92235, 97461, 108345
Offset: 1

Views

Author

Zak Seidov, May 14 2007

Keywords

Comments

All terms are multiples of 3.

Examples

			15-/+2=(13,17), 21-/+2=(19,23), 45-/+2=(43,47) are pairs of consecutive primes.
		

Crossrefs

Programs

  • Maple
    select(t -> isprime(t-2) and isprime(t+2), [seq(i*(i+1)/2,i=1..1000)]); # Robert Israel, Oct 18 2020

Formula

t-/+2 are pair of consecutive primes.

A263676 Numbers that are both interprime and oblong.

Original entry on oeis.org

6, 12, 30, 42, 56, 72, 240, 342, 420, 462, 506, 552, 600, 650, 870, 1056, 1190, 1482, 1722, 1806, 2550, 2652, 2970, 3540, 4422, 6320, 7140, 8010, 10302, 12656, 13572, 14042, 17292, 18360, 19182, 19460, 20022, 22952, 23562, 24180, 27060, 29070, 29756, 31152, 33306, 35156, 35532, 39006
Offset: 1

Views

Author

Antonio Roldán, Oct 23 2015

Keywords

Examples

			342 is in this sequence because 342 = 18*19 is oblong, and 342 = (337 + 347)/2, with 337 and 347 consecutive primes.
		

Crossrefs

Intersection of A024675 and A002378. - Omar E. Pol, Oct 24 2015
Lesser of consecutive primes is in the sequence A242383.

Programs

  • Mathematica
    lim = 40000; Intersection[Plus @@@ Partition[Table[Prime@ n, {n, 2, PrimePi@ lim}], 2, 1]/2, Table[n (n + 1), {n, 0, lim}]] (* Michael De Vlieger, Nov 18 2015, after Clark Kimberling at A024675 and Robert G. Wilson v at A002378 *)
    obQ[n_]:=With[{divs=Partition[Divisors[n],2,1]},Length[Select[divs,#[[2]]-#[[1]]== 1 && Times@@#==n&]]>0]; Select[Mean/@Partition[Prime[ Range[ 2,40000]],2,1],obQ] (* Harvey P. Dale, Nov 01 2022 *)
  • PARI
    {for(i=1,500,n=i*(i+1);if(n==(precprime(n-1)+nextprime(n+1))/2, print1(n,", ")))}

A264721 Composite numbers that are greater than the average of their closest flanking primes.

Original entry on oeis.org

10, 16, 22, 27, 28, 35, 36, 40, 46, 51, 52, 57, 58, 65, 66, 70, 77, 78, 82, 87, 88, 94, 95, 96, 100, 106, 112, 121, 122, 123, 124, 125, 126, 130, 135, 136, 145, 146, 147, 148, 155, 156, 161, 162, 166, 171, 172, 177, 178, 187, 188, 189, 190, 196, 206, 207, 208
Offset: 1

Views

Author

Chris Boyd, Nov 21 2015

Keywords

Comments

Composite numbers that are nearer to the immediately next prime than to the immediately previous prime.
Members of this sequence are the numbers C, necessarily composite, such that I_n < C < P_n+1, where P_n is the n-th odd prime and I_n the interprime (A024675) between P_n and P_n+1.
Prime-free subsequence of A264719.

Examples

			a(7) = 36 because 36 > (31 + 37)/2 = 34.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 208, And[CompositeQ@ #, # > (Abs@ NextPrime[#, -1] + NextPrime@ #)/2] &] (* Michael De Vlieger, Nov 22 2015 *)
  • PARI
    test(n)= {if(n-precprime(n-1)>nextprime(n+1)-n&&n>2&&!isprime(n),return(1),return(0))}
    for(i=1,200,if(test(i),print1(i,", ")))

A264722 Composite numbers that are less than the average of their closest flanking primes.

Original entry on oeis.org

8, 14, 20, 24, 25, 32, 33, 38, 44, 48, 49, 54, 55, 62, 63, 68, 74, 75, 80, 84, 85, 90, 91, 92, 98, 104, 110, 114, 115, 116, 117, 118, 119, 128, 132, 133, 140, 141, 142, 143, 152, 153, 158, 159, 164, 168, 169, 174, 175, 182, 183, 184, 185, 194, 200, 201, 202, 203
Offset: 1

Views

Author

Chris Boyd, Nov 21 2015

Keywords

Comments

Composite numbers that are nearer to the immediately previous prime than to the immediately next prime.
Members of this sequence are the numbers C, necessarily composite, such that P_n < C < I_n, where P_n is the n-th odd prime and I_n the interprime (A024675) between P_n and P_n+1.
Prime-free subsequence of A264720.

Examples

			a(7) = 33 because 33 < (31 + 37)/2 = 34.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 204, And[CompositeQ@ #, # < (NextPrime[#, -1] + NextPrime@ #)/2] &] (* Michael De Vlieger, Nov 22 2015 *)
    Range[#[[1]]+1,Total[#]/2 -1]&/@Select[Partition[Prime[Range[50]],2,1], #[[2]]- #[[1]]>2&]//Flatten  (* Harvey P. Dale, Jul 28 2020 *)
  • PARI
    test(n)= {if(n-precprime(n-1)2&&!isprime(n),return(1),return(0))}
    for(i=1,200,if(test(i),print1(i,", ")))

A063932 Average of largest prime less than or equal to n and smallest prime greater than or equal to n.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 9, 9, 11, 12, 13, 15, 15, 15, 17, 18, 19, 21, 21, 21, 23, 26, 26, 26, 26, 26, 29, 30, 31, 34, 34, 34, 34, 34, 37, 39, 39, 39, 41, 42, 43, 45, 45, 45, 47, 50, 50, 50, 50, 50, 53, 56, 56, 56, 56, 56, 59, 60, 61, 64, 64, 64, 64, 64, 67, 69, 69, 69, 71, 72, 73
Offset: 2

Views

Author

Henry Bottomley, Aug 21 2001

Keywords

Examples

			a(7) = (7 + 7)/2 = 7;
a(8) = (7 + 11)/2 = 9.
		

Crossrefs

Interleaving of A000040 and A001223-1 copies of A024675. Cf. A063934.

Programs

  • Mathematica
    Table[Mean[{NextPrime[n-1],NextPrime[n+1,-1]}],{n,2,80}] (* Harvey P. Dale, Nov 22 2011 *)
  • PARI
    { for (n=2, 1000, write("b063932.txt", n, " ", (precprime(n) + nextprime(n))/2) ) } \\ Harry J. Smith, Sep 02 2009

Formula

a(n) = (A007917(n) + A007918(n))/2 = n - A063933(n).

A063933 Difference between n and the average of largest prime less than or equal to n and smallest prime greater than or equal to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -2, -1, 0, 1, 2, 0, 0, 0, -2, -1, 0, 1, 2, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -2, -1, 0, 1, 2, 0, -2, -1, 0, 1, 2, 0, 0, 0, -2, -1, 0, 1, 2, 0, -1, 0, 1, 0, 0, 0, -2, -1, 0, 1, 2, 0, -1, 0, 1, 0, -2, -1, 0, 1, 2, 0, -3, -2, -1, 0, 1, 2, 3, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0
Offset: 2

Views

Author

Henry Bottomley, Aug 21 2001

Keywords

Examples

			a(10) = 10 - (11 - 7)/2 = 1; a(11) = 11 - (11 + 11)/2 = 0.
		

Programs

  • PARI
    { for (n=2, 1000, write("b063933.txt", n, " ", n - (precprime(n) + nextprime(n))/2) ) } \\ Harry J. Smith, Sep 03 2009

Formula

a(n) = n - (A007917(n) + A007918(n))/2 = n - A063932(n).
a(n) = 0 for numbers in A063934 (i.e., in A000040 or A024675).

A072570 Even interprimes i = (p+q)/2 (where p, q are consecutive primes) such that (q-p)/2 is not divisible by 3.

Original entry on oeis.org

4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 120, 138, 144, 150, 180, 186, 192, 198, 228, 240, 246, 270, 282, 288, 300, 312, 324, 342, 348, 414, 420, 426, 432, 462, 522, 552, 570, 582, 600, 618, 636, 642, 660, 696, 714, 780, 792, 810, 816, 822, 828, 834, 846, 858
Offset: 1

Views

Author

Marco Matosic, Jun 24 2002

Keywords

Comments

A superset of A014574. [R. J. Mathar, Mar 03 2009]

Crossrefs

Cf. A024675, A072571. A072568 is union of A072571 and this sequence.

Programs

  • Mathematica
    a = Table[Prime[n], {n, 2, 200}]; b = {}; Do[d = (a[[n + 1]] - a[[n]])/2; If[ EvenQ[ a[[n]] + d] && (Mod[d, 6] == 5 || Mod[d, 6] == 1), b = Append[b, a[[n]] + d]], {n, 1, 198}]; b
    Mean/@Select[Partition[Prime[Range[200]],2,1],EvenQ[Mean[#]] && !Divisible[ (#[[2]]-#[[1]])/2,3]&] (* Harvey P. Dale, Sep 27 2017 *)
  • PARI
    q=3;forprime(p=5,1e3,(s=q+q=p)%4==0 && (s-2*p)%3 && print1(s/2",")) \\ M. F. Hasler, Nov 29 2013
    
  • PARI
    is_A072570(n)=my(p=precprime(n));nextprime(n)+p==2*n && (n-p)%3 && !bittest(n,0) \\ M. F. Hasler, Nov 30 2013

Formula

If d = (P_{n+1} - P_n)/2 is even & d/2 == +/- 1 (mod 6), then P_n + d = (P_{n+1} + P_n)/2 is in the sequence. [Corrected by M. F. Hasler, Nov 29 2013]

Extensions

Edited by N. J. A. Sloane and Robert G. Wilson v, Jun 27 2002

A072571 Even interprimes i = (p+q)/2 (where p, q are consecutive primes) such that (q-p)/2 is divisible by 3.

Original entry on oeis.org

26, 34, 50, 56, 64, 76, 86, 134, 154, 160, 170, 176, 236, 254, 260, 266, 274, 334, 356, 370, 376, 386, 436, 446, 506, 532, 544, 560, 566, 574, 590, 596, 604, 610, 650, 656, 680, 730, 736, 754, 944, 950, 974, 980, 994, 1016, 1036, 1066, 1078, 1100, 1106
Offset: 1

Views

Author

Marco Matosic, Jun 24 2002

Keywords

Crossrefs

Cf. A024675, A072570. A072568 is union of A072570 and this sequence.

Programs

  • Mathematica
    a = Table[Prime[n], {n, 2, 200}]; b = {}; Do[d = (a[[n + 1]] - a[[n]])/2; If[ EvenQ[ a[[n]] + d] && Mod[d, 6] == 3, b = Append[b, a[[n]] + d]], {n, 1, 198}]; b
    Select[Mean/@Select[Partition[Prime[Range[200]],2,1],Divisible[(#[[2]]- #[[1]])/ 2,3]&],EvenQ] (* Harvey P. Dale, May 09 2021 *)

Formula

(P_n+1 - P_n)/2 is even but not divisible by 4.

Extensions

Edited by N. J. A. Sloane and Robert G. Wilson v, Jun 27 2002

A126558 Arithmetic mean of two consecutive prime interprimes of third order: interprimes of fourth order.

Original entry on oeis.org

199532, 329070, 487630, 664345, 878455, 974874, 1030434, 1183684, 1329780, 1453746, 1550775, 1568843, 1573919, 1618431, 1693333, 1829142, 2087087, 2262462, 2348799, 2438192, 2811665, 3436775, 3900917, 4270580, 4830665
Offset: 1

Views

Author

Artur Jasinski, Dec 27 2006

Keywords

Comments

For primes in this sequence (prime interprimes of fourth order) see A127364.

Crossrefs

Cf. A006562 (balanced primes), A024675 (interprimes), A126554 (interprimes of second order), A126555 (prime interprimes of second order), A126556 (interprimes of third order), A126557 (prime interprimes of third order).

Programs

  • PARI
    {m=5000000;a=0;g=0;e=0;p=2;q=3;r=5;while(r<=m,if((p+r)/2==q,if(a>0,b=(a+q)/2;if(isprime(b),if(g>0,h=(g+b)/2;if(isprime(h),if(e>0,f=(e+h)/2;print1(f,","));e=h));g=b));a=q);p=q;q=r;r=nextprime(r+1))} \\ Klaus Brockhaus, Jan 11 2007

Formula

a(n) = (A126557(n)+A126557(n+1))/2.

Extensions

Edited and extended by Klaus Brockhaus, Jan 11 2007
Previous Showing 51-60 of 101 results. Next