cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 214 results. Next

A134605 Composite numbers such that the square root of the sum of squares of their prime factors (with multiplicity) is an integer.

Original entry on oeis.org

16, 48, 81, 320, 351, 486, 512, 625, 1080, 1260, 1350, 1375, 1792, 1836, 2070, 2145, 2175, 2401, 2730, 2772, 3072, 3150, 3510, 4104, 4305, 4625, 4650, 4655, 4998, 5880, 6000, 6174, 6545, 7098, 7128, 7182, 7650, 7791, 7889, 7956, 9030, 9108, 9295, 9324
Offset: 1

Views

Author

Hieronymus Fischer, Nov 11 2007

Keywords

Examples

			a(2)=48 since 48=2*2*2*2*3 and sqrt(4*2^2+3^2)=sqrt(25)=5.
		

Crossrefs

Programs

  • Mathematica
    srssQ[n_]:=IntegerQ[Sqrt[Total[Flatten[Table[#[[1]],#[[2]]]&/@ FactorInteger[ n]]^2]]]; Select[Range[10000],CompositeQ[#]&&srssQ[#]&] (* Harvey P. Dale, Jan 22 2019 *)
  • PARI
    is(n)=my(f=factor(n)); issquare(sum(i=1,#f~,f[i,1]^2*f[i,2])) && !isprime(n) && n>1 \\ Charles R Greathouse IV, Apr 29 2015

A134608 Composite numbers such that the cube root of the sum of cubes of their prime factors is an integer.

Original entry on oeis.org

256, 588, 693, 3840, 6561, 14157, 17787, 141960, 178360, 313600, 337365, 350000, 387072, 390625, 407442, 432000, 466560, 531674, 535815, 541310, 664909, 697851, 1044582, 1262056, 1264640, 1299272, 1374327, 1547570, 1608575, 1660360
Offset: 1

Views

Author

Hieronymus Fischer, Nov 11 2007

Keywords

Examples

			a(3)=693, since 693=3*3*7*11 and (2*3^3+7^3+11^3)^(1/3)=1728^(1/3)=12.
		

Crossrefs

Programs

  • Mathematica
    criQ[n_]:=IntegerQ[Surd[Total[Flatten[Table[#[[1]],#[[2]]]&/@ FactorInteger[ n]]^3],3]]; Select[Range[1670000],CompositeQ[#] && criQ[#]&] (* Harvey P. Dale, Sep 19 2021 *)
  • PARI
    lista(m) = {for (i=2, m, if (! isprime(i), f = factor(i); s = sum (j=1, length(f~), f[j,1]^3*f[j,2]); if (ispower(s, 3), print1(i, ", "));););} \\ Michel Marcus, Apr 14 2013

Extensions

Minor edits by Hieronymus Fischer, Apr 20 2013

A134602 Composite numbers such that the square mean of their prime factors is a nonprime integer (where the prime factors are taken with multiplicity and the square mean of c and d is sqrt((c^2+d^2)/2)).

Original entry on oeis.org

378, 455, 527, 918, 1265, 1615, 2047, 2145, 2175, 2345, 2665, 3713, 3835, 4207, 4305, 4633, 5000, 5117, 5382, 6061, 6678, 6887, 6965, 7055, 7267, 7327, 7497, 7685, 7791, 8470, 8785, 8918, 9641, 10205, 10545, 10647, 11137, 11543, 11713, 13482, 14079
Offset: 1

Views

Author

Hieronymus Fischer, Nov 11 2007

Keywords

Comments

Numbers included in A134600, but not in A134601. a(1)=378 is the minimal number with this property.
Also numbers included in A134603, but not in A134604.

Examples

			a(2)=455, since 455=5*7*13 and sqrt((5^2+7^2+13^2)/3)=sqrt(81)=9.
		

Crossrefs

Programs

  • Mathematica
    f[{a_,b_}]:=Table[a,b];Select[Range[2,14079],!PrimeQ[#]&&!PrimeQ[ RootMeanSquare[f/@FactorInteger[#]//Flatten] ]&&IntegerQ[ RootMeanSquare[f/@FactorInteger[#]//Flatten] ]&] (* James C. McMahon, Apr 08 2025 *)

Extensions

Definition clarified by Hieronymus Fischer, Apr 20 2013, Jun 01 2013

A036785 Numbers divisible by the squares of two distinct primes.

Original entry on oeis.org

36, 72, 100, 108, 144, 180, 196, 200, 216, 225, 252, 288, 300, 324, 360, 392, 396, 400, 432, 441, 450, 468, 484, 500, 504, 540, 576, 588, 600, 612, 648, 675, 676, 684, 700, 720, 756, 784, 792, 800, 828, 864, 882, 900, 936, 968, 972, 980, 1000, 1008, 1044
Offset: 1

Views

Author

Keywords

Comments

Not squarefree, not a nontrivial prime power and not in {squarefree} times {nontrivial prime powers}.
Numbers k such that A056170(k) > 1. The asymptotic density of this sequence is 1 - (6/Pi^2) * (1 + A154945) = 0.05668359058... - Amiram Eldar, Nov 01 2020

References

  • CRC Standard Mathematical Tables and Formulae, 30th ed., (1996) page 102-105.

Crossrefs

Equivalent sequence for 3 distinct primes: A318720.
Cf. A085986, A338539, A339245 (subsequences).
Subsequence of A038838.

Programs

  • Mathematica
    Select[Range@ 1050, And[Length@ # > 1, Total@ Boole@ Map[# > 1 &, #[[All, -1]]] > 1] &@ FactorInteger@ # &] (* Michael De Vlieger, Apr 25 2017 *)
    dstdpQ[n_]:=Length[Select[Sqrt[#]&/@Divisors[n],PrimeQ]]>1; Select[ Range[ 1100],dstdpQ] (* Harvey P. Dale, Jan 15 2020 *)
  • PARI
    is(n)=my(f=vecsort(factor(n)[,2],,4));#f>1&&f[2]>1 \\ Charles R Greathouse IV, Nov 15 2012

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 03 2000
New name from Charles R Greathouse IV, Nov 15 2012

A014673 Smallest prime factor of greatest proper divisor of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 2, 3, 5, 1, 2, 1, 7, 5, 2, 1, 3, 1, 2, 7, 11, 1, 2, 5, 13, 3, 2, 1, 3, 1, 2, 11, 17, 7, 2, 1, 19, 13, 2, 1, 3, 1, 2, 3, 23, 1, 2, 7, 5, 17, 2, 1, 3, 11, 2, 19, 29, 1, 2, 1, 31, 3, 2, 13, 3, 1, 2, 23, 5, 1, 2, 1, 37, 5, 2, 11, 3, 1, 2, 3, 41, 1, 2, 17, 43, 29, 2, 1, 3, 13, 2, 31, 47
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 24 2003

Keywords

Comments

For n > 1: a(n) = 1 iff n is prime; a(A001358(n)) = A084127(n); a(A025475(n)) = A020639(A025475(n)). [corrected by Peter Munn, Feb 19 2017]
When n is composite, this is the 2nd factor when n is written as a product of primes in nondecreasing order. For example, 12 = 2*2*3, so a(12) = 2. - Peter Munn, Feb 19 2017
For all sufficiently large n the median value of a(1), a(2), ... a(n) is A281889(2) = 7. - Peter Munn, Jul 12 2019

Crossrefs

Programs

  • Mathematica
    PrimeFactors[ n_ ] := Flatten[ Table[ # [ [ 1 ] ], {1} ] & /@ FactorInteger[ n ] ]; f[ n_ ] := Block[ {gpd = Divisors[ n ][ [ -2 ] ]}, If[ gpd == 1, 1, PrimeFactors[ gpd ][ [ 1 ] ] ] ]; Table[ If[ n == 1, 1, f[ n ] ], {n, 1, 95} ]
    (* Second program: *)
    Table[If[Or[PrimeQ@ n, n == 1], 1, FactorInteger[n/SelectFirst[Prime@ Range@ PrimePi[Sqrt@ n], Divisible[n, #] &]][[1, 1]] ], {n, 94}] (* Michael De Vlieger, Aug 14 2017 *)
  • PARI
    lpf(n)=if(n>1,factor(n)[1,1],1)
    a(n)=lpf(n/lpf(n)) \\ Charles R Greathouse IV, May 09 2013
    
  • PARI
    a(n)=if(n<4||isprime(n),return(1)); my(f=factor(n)); if(f[1,2]>1, f[1,1], f[2,1]) \\ Charles R Greathouse IV, May 09 2013
    
  • Scheme
    (define (A014673 n) (A020639 (/ n (A020639 n)))) ;; Code for A020639 given under that entry - Antti Karttunen, Aug 12 2017

Formula

a(n) = A020639(A032742(n)).
A117357(n) = A020639(A054576(n)); A117358(n) = A032742(A054576(n)) = A054576(n)/A117357(n). - Reinhard Zumkeller, Mar 10 2006
If A001222(n) >= 2, a(n) = A027746(n,2), otherwise a(n) = 1. - Peter Munn, Jul 13 2019

A067871 Number of primes between consecutive terms of A246547 (prime powers p^k, k >= 2).

Original entry on oeis.org

2, 0, 2, 3, 0, 2, 4, 3, 4, 8, 0, 1, 8, 14, 1, 7, 7, 4, 25, 2, 15, 15, 17, 16, 10, 45, 2, 44, 20, 26, 18, 0, 2, 28, 52, 36, 42, 32, 45, 45, 47, 19, 30, 106, 36, 35, 4, 114, 28, 135, 89, 42, 87, 42, 34, 66, 192, 106, 56, 23, 39, 37, 165, 49, 37, 262, 58, 160, 22
Offset: 1

Views

Author

Jon Perry, Mar 07 2002

Keywords

Comments

Does this sequence have any terms appearing infinitely often? In particular, are {2, 5, 11, 32, 77} the only zeros? As an example, {121, 122, 123, 124, 125} is an interval containing no primes, corresponding to a(11) = 0. - Gus Wiseman, Dec 02 2024

Examples

			The first few prime powers A246547 are 4, 8, 9, 16. The first few primes are 2, 3, 5, 7, 11, 13. We have (4), 5, 7, (8), (9), 11, 13, (16) and so the sequence begins with 2, 0, 2.
The initial terms count the following sets of primes: {5,7}, {}, {11,13}, {17,19,23}, {}, {29,31}, {37,41,43,47}, ... - _Gus Wiseman_, Dec 02 2024
		

Crossrefs

For primes between nonsquarefree numbers we have A236575.
For composite instead of prime we have A378456.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A080101 counts prime powers between primes.
A246547 lists the non prime prime powers, differences A053707.
A246655 lists the prime powers not including 1, complement A361102.

Programs

  • Mathematica
    t = {}; cnt = 0; Do[If[PrimePowerQ[n], If[FactorInteger[n][[1, 2]] == 1, cnt++, AppendTo[t, cnt]; cnt = 0]], {n, 4 + 1, 30000}]; t (* T. D. Noe, May 21 2013 *)
    nn = 2^20; Differences@ Map[PrimePi, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], PrimePowerQ] ] (* Michael De Vlieger, Oct 26 2023 *)

Formula

a(n) = A000720(A025475(n+3)) - A000720(A025475(n+2)). - David Wasserman, Dec 20 2002

Extensions

More terms from David Wasserman, Dec 20 2002
Definition clarified by N. J. A. Sloane, Oct 27 2023

A376340 Sorted positions of first appearances in A057820, the sequence of first differences of prime-powers.

Original entry on oeis.org

1, 4, 9, 12, 18, 24, 34, 47, 60, 79, 117, 178, 198, 206, 215, 244, 311, 402, 465, 614, 782, 1078, 1109, 1234, 1890, 1939, 1961, 2256, 2290, 3149, 3377, 3460, 3502, 3722, 3871, 4604, 4694, 6634, 8073, 8131, 8793, 12370, 12661, 14482, 14990, 15912, 17140, 19166
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2024

Keywords

Examples

			The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     9: {2,2}
    12: {1,1,2}
    18: {1,2,2}
    24: {1,1,1,2}
    34: {1,7}
    47: {15}
    60: {1,1,2,3}
    79: {22}
   117: {2,2,6}
   178: {1,24}
   198: {1,2,2,5}
   206: {1,27}
   215: {3,14}
   244: {1,1,18}
		

Crossrefs

For compression instead of sorted firsts we have A376308.
For run-lengths instead of sorted firsts we have A376309.
For run-sums instead of sorted firsts we have A376310.
The version for squarefree numbers is the unsorted version of A376311.
The unsorted version is A376341.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, first differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A024619 and A361102 list non-prime-powers, first differences A375708.
A116861 counts partitions by compressed sum, by compressed length A116608.

Programs

  • Mathematica
    q=Differences[Select[Range[100],PrimePowerQ]];
    Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]

A377054 First term of the n-th differences of the powers of primes. Inverse zero-based binomial transform of A000961.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, -5, 15, -34, 63, -97, 115, -54, -251, 1184, -3536, 8736, -18993, 37009, -64545, 98442, -121393, 82008, 147432, -860818, 2710023, -7110594, 17077281, -38873146, 85085287, -179965647, 367885014, -725051280, 1372311999, -2481473550, 4257624252
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2024

Keywords

Examples

			The sixth differences of A000961 begin: -5, 10, -9, 1, 6, -10, 16, -18, ..., so a(6) = -5.
		

Crossrefs

The version for primes is A007442, noncomposites A030016, composites A377036.
For squarefree numbers we have A377041, nonsquarefree A377049.
This is the first column of the array A377051.
For antidiagonal-sums we have A377052, absolute A377053.
For positions of first zeros we have A377055.
A000040 lists the primes, differences A001223, seconds A036263.
A000961 lists the powers of primes, differences A057820.
A001597 lists perfect-powers, complement A007916.
A008578 lists the noncomposites, differences A075526.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.

Programs

  • Mathematica
    q=Select[Range[100],#==1||PrimePowerQ[#]&];
    Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[1+k]],{k,0,j}],{j,0,Length[q]/2}]

Formula

The inverse zero-based binomial transform of a sequence (q(0), q(1), q(2), ...) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k)*binomial(j,k)*q(k)

A134621 Numbers such that the arithmetic mean of the 4th power of their prime factors (taken with multiplicity) is a prime.

Original entry on oeis.org

15, 28, 39, 48, 51, 65, 68, 76, 77, 85, 87, 93, 111, 119, 133, 141, 143, 148, 155, 161, 175, 187, 189, 209, 212, 215, 221, 225, 235, 244, 275, 287, 295, 301, 315, 316, 320, 323, 329, 355, 393, 403, 404, 411, 428, 437, 447, 451, 455, 481, 505, 508, 515, 517
Offset: 1

Views

Author

Hieronymus Fischer, Nov 11 2007

Keywords

Examples

			a(3)=39, since 39=3*13 and (3^4+13^4)/2=14321 which is prime.
		

Crossrefs

Extensions

Minor edits by Hieronymus Fischer, May 06 2013

A303554 Union of the prime powers (p^k, p prime, k >= 0) and numbers that are the product of 2 or more distinct primes.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 26 2018

Keywords

Examples

			42 is in the sequence because 42 = 2*3*7 (3 distinct prime factors).
81 is in the sequence because 81 = 3^4 (4 prime factors, 1 distinct).
		

Crossrefs

Complement of A126706.
Union of A005117 and A246547.
Union of A000469 and A246655.
Union of A000961 and A120944.
Cf. A025475.

Programs

  • Mathematica
    Select[Range[110], PrimePowerQ[#] || SquareFreeQ[#] &]
    Select[Range[110], PrimeNu[#] == 1 || PrimeNu[#] == PrimeOmega[#] &]
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, mobius
    def A303554(n):
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 19 2024
Previous Showing 71-80 of 214 results. Next