cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A166107 A sequence related to the Madhava-Gregory-Leibniz formula for Pi.

Original entry on oeis.org

2, -10, 46, -334, 982, -10942, 140986, -425730, 7201374, -137366646, 410787198, -9473047614, 236302407090, -710245778490, 20563663645710, -638377099140510, 1912749274005030, -67020067316087550, 2477305680740159850
Offset: 0

Views

Author

Johannes W. Meijer, Oct 06 2009, Feb 26 2013, Mar 02 2013

Keywords

Comments

The EG1 matrix is defined in A162005. The first column of this matrix leads to the function PLS(z) = sum(2*eta(2*m-1)*z^(2*m-2), m=1..infinity) = 2*log(2) - Psi(z) - Psi(-z) + Psi(z/2) + Psi(-z/2). The values of this function for z=n+1/2 are related to Pi in a curious way.
Gauss's digamma theorem leads to PLS(z=n+1/2) = (-1)^n*4*sum((-1)^(k+1)/(2*k-1), k=1..n) + 2/(2*n+1). Now we define PLS(z=n+1/2) = a(n)/p(n) with a(n) the sequence given above and for p(n) we choose the esthetically nice p(n) = (2*n-1)!!/(floor((n-2)/3)*2+1)!!, n=>0. For even values of n the limit(a(2*n)/p(2*n), n=infinity) = Pi and for odd values of n the limit(a(2*n+1)/p(2*n+1), n=infinity) = - Pi. We observe that the a(n)/p(n) formulas resemble the partial sums of the Madhava-Gregory-Leibniz series for Pi = 4*(1-1/3+1/5-1/7+ ...), see the examples. The 'extra term' that appears in the a(n)/p(n) formulas, i.e., 2/(2*n+1), speeds up the convergence of abs(a(n)/p(n)) significantly. The first appearance of a digit in the decimal expansion of Pi occurs here for n: 1, 3, 9, 30, 74, 261, 876, 3056, .., cf. A126809. [Comment modified by the author, Oct 09 2009]

Examples

			The first few values of a(n)/p(n) are: a(0)/p(0) = 2/1; a(1)/p(1) = - 4*(1) + 2/3 = -10/3; a(2)/p(2) = 4*(1-1/3) + 2/5 = 46/15; a(3)/p(3) = - 4*(1-1/3+1/5) + 2/7 = - 334/105; a(4)/p(4)= 4*(1-1/3+1/5-1/7) + 2/9 = 982/315; a(5)/p(5) = - 4*(1-1/3+1/5-1/7+1/9) + 2/11 = -10942/3465; a(6)/p(6) = 4*(1-1/3+1/5-1/7+1/9-1/11) + 2/13 = 140986/45045; a(7)/p(7) = - 4*(1-1/3+1/5-1/7+1/9-1/11+1/13) + 2/15 = - 425730/135135.
		

Crossrefs

Programs

  • Maple
    A166107 := n -> A220747 (n)*((-1)^n*4*sum((-1)^(k+1)/(2*k-1), k=1..n) + 2/(2*n+1)): A130823 := n -> floor((n-1)/3)*2+1: A220747 := n -> doublefactorial(2*n+1) / doublefactorial(A130823(n)): seq(A166107(n), n=0..20);

Formula

a(n) = p(n)*(-1)^n*4*sum((-1)^(k+1)/(2*k-1), k=1..n) + 2/(2*n+1) with
p(n) = doublefactorial(2*n+1)/doublefactorial(floor((n-1)/3)*2+1) = A220747(n)
PLS(z) = 2*log(2) - Psi(z) - Psi(-z) + Psi(z/2) + Psi(-z/2)
PLS(z=n+1/2) = a(n)/p(n) = (-1)^n*4*sum((-1)^(k+1)/(2*k-1), k=1..n) + 2/(2*n+1)
PLS(z=2*n+5/2) - PLS(z=2*n+1/2) = 2/(4*n+5) - 4/(4*n+3) + 2/(4*n+1) which leads to:
Pi = 2 + 16 * sum(1/((4*n+5)*(4*n+3)*(4*n+1)), n=0 .. infinity).
PLS (z=2*n +7/2) - PLS(z=2*n+3/2) = 2/(4*n+7) - 4/(4*n+5) + 2/(4*n+3) which leads to:
Pi = 10/3 - 16*sum(1/((4*n+7)*(4*n+5)*(4*n+3)), n=0 .. infinity).
The combination of these two formulas leads to:
Pi = 8/3 + 48* sum(1/((4*n+7)*(4*n+5)*(4*n+3)*(4*n+1)), n=0 .. infinity).

A167588 The second column of the ED4 array A167584.

Original entry on oeis.org

1, 6, 41, 372, 4077, 53106, 795645, 13536360, 257055705, 5400196830, 124170067665, 3104906420700, 83818724048325, 2431059231544650, 75354930324303525, 2486926158748693200, 87036225272850632625, 3220532233879435917750, 125594424461427237941625
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Crossrefs

Equals the second column of the ED4 array A167584.
Other columns are A024199 and A167589.
Cf. A007509 and A025547 (the sum((-1)^(k+n)/(2*k+1), k=0..n-1) factor), A001147, A142970.

Programs

  • Mathematica
    Table[(1/2)*(-1)^(n)*(2*n - 3)!!*((n) + (4*n^2 - 1)*Sum[(-1)^(k + n)/(2*k + 1), {k, 0, n - 1}]), {n, 1, 50}] (* G. C. Greubel, Jun 17 2016 *)

Formula

a(n) = (1/2)*(-1)^(n)*(2*n-3)!!*(n+(4*n^2-1)*Sum_{k=0..n-1} ((-1)^(k+n)/(2*k+1))).
From Peter Bala, Nov 01 2016: (Start)
a(n) = (2*n + 1)!! * Sum_{k = 0..n-1} (-1)^(k-1)/((2*k - 1)*(2*k + 1)*(2*k + 3)).
a(n) ~ Pi * 2^(n-3/2) * ((n+1)/e)^(n+1).
E.g.f.: (4*x*sqrt(1 - 4*x^2) + 2*arcsin(2*x))/(8*(1 - 2*x)^(3/2)).
a(n) = 6*a(n-1) + (2*n - 5)*(2*n - 1)*a(n-2) with a(0) = 0, a(1) = 1.
The sequence b(n) := (2*n + 1)!! = (2*n + 2)!/((n + 1)!*2^(n+1)) satisfies the same recurrence with b(0) = 1 and b(1) = 3. This leads to the continued fraction representation a(n) = b(n)*[ 1/(3 - 3/(6 + 5/(6 + 21/(6 + ... + (2*n - 5)*(2*n - 1)/(6))))) ] for n >= 2.
As n -> infinity, a(n)/(A001147(n+1)) -> 1/2!*Pi/4 = 1/(3 - 3/(6 + 5/(6 + 21/(6 + ... + (2*n - 5)*(2*n - 1)/(6 + ...))))). Compare with the generalized continued fraction representation Pi = 3 + 1^2/(6 + 3^2/(6 + 5^2/(6 + ...))). See A142970. (End)

A167589 The third column of the ED4 array A167584.

Original entry on oeis.org

1, 10, 93, 1020, 13269, 198990, 3383145, 64276920, 1349846505, 31046064210, 776157686325, 20956154152500, 607730434609725, 18839602224969750, 621707822126431425, 21759750056864358000, 805111392478121276625
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Crossrefs

Equals the third column of the ED4 array A167584.
Other columns are A024199 and A167588.
Cf. A007509 and A025547 (the sum((-1)^(k+n)/(2*k+1), k=0..n-1) factor), A001147.

Programs

  • Mathematica
    Table[(1/8)*(-1)^(n)*(2*n - 5)!!*((4*n^3 - 11*n) + (16*n^4 - 40*n^2 + 9)*(Sum[(-1)^(k + n)/(2*k + 1), {k, 0, n - 1}])), {n, 1, 50}] (* G. C. Greubel, Jun 17 2016 *)

Formula

a(n) = (1/8)*(-1)^n*(2*n-5)!!*((4*n^3-11*n)+(16*n^4-40*n^2+9)*(Sum_{k=0..n-1} (-1)^(k+n)/(2*k+1) ) ).
From Peter Bala, Nov 01 2016: (Start)
a(n) = 3*(2*n + 3)!! * Sum_{k = 0..n-1} (-1)^k/((2*k - 3)*(2*k - 1)*(2*k + 1)*(2*k + 3)*(2*k + 5)).
a(n) ~ Pi*2^(n - 5/2)*((n + 2)/e)^(n + 2).
E.g.f.: (6*arcsin(2*x) + 4*x*sqrt(1 - 4*x^2)*(5 - 8*x^2))/(32*(1 - 2*x)^(5/2)).
a(n) = 10*a(n) + (2*n - 7)*(2*n + 1)*a(n-2) with a(0) = 0, a(1) = 1.
The sequence b(n) := (2*n + 3)!! = (2*n + 4)!/((n + 2)!*2^(n+2)) = A001147(n+2) satisfies the same recurrence with b(0) = 3 and b(1) = 15. This leads to the continued fraction representation a(n) = 1/3*b(n)*( 1/(5 - 15/(10 - 7/(10 + 9/(10 + 33/(10 + ... + (2*n - 7)*(2*n + 1)/(10)))))) ) for n >= 2.
As n -> infinity, 3*a(n)/(A001147(n+2)) -> 9/4!*Pi/4 = 1/(5 - 15/(10 - 7/(10 + 9/(10 + 33/(10 + ... + (2*n - 7)*(2*n + 1)/(10 + ...)))))). (End)

A083390 m such that 2m + 1 divides lcm(1,3,5,...,2m - 1).

Original entry on oeis.org

7, 10, 16, 17, 19, 22, 25, 27, 28, 31, 32, 34, 37, 38, 42, 43, 45, 46, 47, 49, 52, 55, 57, 58, 59, 61, 64, 66, 67, 70, 71, 72, 73, 76, 77, 79, 80, 82, 85, 87, 88, 91, 92, 93, 94, 97, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 112, 115, 117, 118, 122, 123, 124, 126
Offset: 1

Views

Author

Lekraj Beedassy, Jun 11 2003

Keywords

Comments

Also m for which A025547(m)=A025547(m+1). Query: a(n) seems to be equal to A030343(n+4) - 1. Is this true?
While any odd number>1 can be the leg of a primitive Pythagorean triangle, the m-th odd number 2m+1=A061346 forms leg common to more than one PPT. - Lekraj Beedassy, Jul 12 2006

Examples

			10 is in the sequence because we have 2*10 - 1 = 19 and lcm(1,3,5,...,19)=166966608033225=7950790858725*21 which is divisible by 2*10 + 1 = 21.
		

Crossrefs

Cf. A080765.

Programs

  • Mathematica
    Select[Range[150],Divisible[LCM@@Range[1,2#-1,2],2#+1]&] (* Harvey P. Dale, Jan 22 2023 *)
  • PARI
    isok(n) = {lc = 1; for (i = 1, 2*n-1, lc = lcm(lc, i);); return (lc % (2*n+1) == 0);} \\ Michel Marcus, Jul 27 2013

Formula

a(n) = (A061346(n)-1)/2. - David Wasserman, Oct 26 2004

Extensions

More terms from David Wasserman, Oct 26 2004

A111877 a(n) = denominator of 3*Sum_{j=0..n+1} 1/(2*j+1).

Original entry on oeis.org

1, 5, 35, 105, 1155, 15015, 15015, 255255, 4849845, 4849845, 111546435, 557732175, 1673196525, 48522699225, 1504203675975, 1504203675975, 1504203675975, 55655536011075, 55655536011075, 2281876976454075, 98120709987525225
Offset: 0

Views

Author

Paul Barry, Aug 19 2005

Keywords

Crossrefs

Cf. A001620, A025547, A350669 (numerators).

Programs

  • Magma
    [Denominator((2*HarmonicNumber(2*n+4) - HarmonicNumber(n+2)))/3: n in [0..40]]; // G. C. Greubel, Jul 24 2023
    
  • Mathematica
    f[x_]:= 2*x+1; a[1]= f[1]; a[n_]:= LCM[f[n], a[n-1]]; Array[a, 21]/3 (* Robert G. Wilson v, Jan 04 2013 *)
  • SageMath
    [denominator(2*harmonic_number(2*n+4,1) - harmonic_number(n+2,1))/3 for n in range(41)] # G. C. Greubel, Jul 24 2023

Formula

a(n) = denominator of (3/2)*(digamma(n+5/2) + 2*log(2) + euler_gamma).
a(n) = denominator of ( 3*Sum_{j=0..n+1} 1/(2*j+1) ).
a(n) = (1/3) * denominator of ( 2*H_{2*n+4} - H_{n+2} ), where H_{n} is the n-th Harmonic number. - G. C. Greubel, Jul 24 2023

Extensions

Name edited by G. C. Greubel, Jul 24 2023

A217858 Odd part of lcm(1,2,3,...,n).

Original entry on oeis.org

1, 1, 3, 3, 15, 15, 105, 105, 315, 315, 3465, 3465, 45045, 45045, 45045, 45045, 765765, 765765, 14549535, 14549535, 14549535, 14549535, 334639305, 334639305, 1673196525, 1673196525, 5019589575, 5019589575, 145568097675, 145568097675, 4512611027925, 4512611027925, 4512611027925
Offset: 1

Views

Author

Joerg Arndt, Oct 13 2012

Keywords

Examples

			a(8) is the least common multiple of {1,3,5,7}.
		

Crossrefs

Programs

Formula

a(n) = A000265( A003418(n) ).
a(n) = lcm_{1 <= k <= n, k odd}. - Peter Luschny, Oct 15 2012
a(n) = A025547(floor((n+1)/2)). - Georg Fischer, Nov 29 2022

A127676 Numerators of partial sums of a series for Pi*sqrt(2)/4.

Original entry on oeis.org

1, 4, 17, 104, 347, 4132, 50251, 47248, 848261, 16882724, 16189889, 357817912, 1856017421, 5753962988, 161845337077, 4871637351712, 5008383140437, 5137314884092, 185568039683479, 181286844605704, 7599727236867089
Offset: 0

Views

Author

Wolfdieter Lang, Mar 07 2007

Keywords

Comments

Denominators coincide with A025547(n+1) for n=0..41, but then start to differ. See the W. Lang link. denominator(r(42))=7422822568422519986207785205976075 but the corresponding entry is A025547(43)=126187983663182839765532348501593275.

Examples

			Rationals r(n): [1, 4/3, 17/15, 104/105, 347/315, 4132/3465, ...].
		

References

  • E. Maor, Trigonometric Delights, Princeton University Press, 1998, p. 205.

Crossrefs

Cf. A025547 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^Floor(k/2)/(1+2*k): k in [0..n]])): n in [0..50]]; // G. C. Greubel, Aug 17 2018
  • Mathematica
    Numerator[Table[Sum[(-1)^Floor[k/2]/(2*k + 1), {k, 0, n}], {n, 0, 50}]] (* G. C. Greubel, Aug 17 2018 *)
  • PARI
    a(n) = numerator(sum(k=0, n, (-1)^(k\2)/(2*k+1))); \\ Michel Marcus, Oct 03 2017
    

Formula

a(n) = numerator(r(n)) with the rationals (in lowest terms) r(n) = Sum_{k=0..n} (-1)^floor(k/2)/(2*k+1).

A352395 Denominator of Sum_{k=0..n} (-1)^k / (2*k+1).

Original entry on oeis.org

1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225, 294362129962575675, 294362129962575675, 13835020108241056725
Offset: 0

Views

Author

Wolfdieter Lang, Apr 06 2022

Keywords

Comments

This is not the sequence A025547(n+1)_{n>=0}, because a(32) = 1420993851085122917681925 but A025547(33) = 18472920064106597929865025. Hence it is also not the sequence A350670.
The alternating sum Sum_{k=0..n} (-1)^k/(2*k+1) = (Psi(n + 3/2) - Psi((2*n - (-1)^n)/4 + 1) - log(2) + Pi/2)/2, with the Digamma function Psi(z).
Proof by subtracting twice the negative fractions from Sum_{k=0..n} 1/(2*k+1) = A350669(n)/A350670(n) (Abramowitz-Stegun, p. 258, eq. 6.3.4.), using Sum_{j=0..k} 1/(4*j + 3) = A074637((k+1)/4)/A074638(k+1) (Abramowitz-Stegun, p. 258, eqs. 6.3.6. with 6.3.5.) and, finally, replacing in the results for the even and odd n cases the formula for Psi(3/4) = -A200134.

Crossrefs

Cf. A007509 (numerators).

Programs

  • Mathematica
    Denominator @ Accumulate @ Table[(-1)^k/(2*k + 1), {k, 0, 25}] (* Amiram Eldar, Apr 08 2022 *)
  • PARI
    a(n) = denominator(sum(k=0, n, (-1)^k / (2*k+1))); \\ Michel Marcus, Apr 07 2022
    
  • Python
    from fractions import Fraction
    def A352395(n): return sum(Fraction(-1 if k % 2 else 1,2*k+1) for k in range(n+1)).denominator # Chai Wah Wu, May 18 2022

Formula

a(n) = denominator( (Psi(n + 3/2) - Psi((2*n - (-1)^n)/4 + 1) - log(2) + Pi/2)/2), for n >= 0, with the Digamma function. See the above comment.
a(n) = denominator(Pi/4 + (-1)^n * (Psi((n + 5/2)/2) - Psi((n + 3/2)/2))/4). - Vaclav Kotesovec, May 16 2022

A025548 a(n) = sum of the exponents in the prime factorization of the least common multiple of {1,3,5,...,2n-1}.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 13, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 19, 19, 20, 21, 21, 21, 22, 22, 23, 24, 24, 24, 25, 26, 27, 27, 27, 28, 28, 28, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 34, 34, 34, 35, 35, 36, 37, 37, 38, 38, 38, 39, 40, 40, 40, 40
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1) .. a(N)
    V:= Vector(N):
    p:= 2:
    do
      p:= nextprime(p);
      if p > 2*N-1 then break fi;
      J:= [seq((p^i+1)/2, i = 1 .. ilog[p](2*N-1))];
      V[J]:= V[J] +~ 1;
    od:
    ListTools:-PartialSums(convert(V,list)); # Robert Israel, Dec 26 2024

Formula

a(n) = A001222(A025547(n)).

Extensions

Corrected and extended by Ray Chandler, May 01 2007

A111878 a(n) = A111877(n+1)/5.

Original entry on oeis.org

1, 7, 21, 231, 3003, 3003, 51051, 969969, 969969, 22309287, 111546435, 334639305, 9704539845, 300840735195, 300840735195, 300840735195, 11131107202215, 11131107202215, 456375395290815, 19624141997505045, 19624141997505045
Offset: 0

Views

Author

Paul Barry, Aug 19 2005

Keywords

Crossrefs

Programs

  • Magma
    H:=HarmonicNumber; [Denominator((2*H(2*n+6) - H(n+3)))/15: n in [0..40]]; // G. C. Greubel, Jul 24 2023
    
  • Mathematica
    With[{H=HarmonicNumber}, Table[Denominator[2*H[2*n+6] -H[n+3]]/15, {n, 0, 40}]] (* G. C. Greubel, Jul 24 2023 *)
  • SageMath
    h=harmonic_number; [denominator(2*h(2*n+6,1) - h(n+3,1))/15 for n in range(41)] # G. C. Greubel, Jul 24 2023

Formula

a(n) = (1/15)*denominator(digamma(n+7/2)/2 + log(2) + euler_gamma/2).
a(n) = denominator(f(n+2)/15), where f(n) = Sum_{j=0..n} 1/(2*j+1).
a(n) = (1/15) * denominator of ( 2*H_{2*n+6} - H_{n+3} ), where H_{n} is the n-th Harmonic number. - G. C. Greubel, Jul 24 2023
Previous Showing 21-30 of 34 results. Next