cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A032533 Numbers that, when expressed in base 2 and then interpreted in base 10, yield a multiple of the original number.

Original entry on oeis.org

1, 2, 4, 8, 10, 16, 20, 21, 32, 40, 42, 64, 80, 84, 100, 128, 160, 168, 200, 256, 273, 320, 336, 400, 512, 546, 640, 672, 800, 1000, 1024, 1092, 1280, 1344, 1600, 2000, 2048, 2184, 2231, 2510, 2560, 2688, 2730, 3200, 3300, 4000, 4096, 4368, 4462
Offset: 1

Views

Author

Patrick De Geest, Apr 15 1998

Keywords

Comments

Note that A025612 is a subset of this sequence (numbers of form 2^i*10^j, with i, j >= 0).

Examples

			8 in base 2 is 1000, which interpreted in base 10 is 1000 = 125*8.
		

Crossrefs

Programs

  • Magma
    [k:k in [1..5000]| Seqint(Intseq(k,2)) mod k eq 0]; // Marius A. Burtea, Oct 11 2019
    
  • Mathematica
    Select[Range[10000], Mod[FromDigits[IntegerDigits[#, 2]], #] == 0 &] (* Carl Najafi, Aug 18 2011 *)
  • PARI
    select( is_A032533(n)=fromdigits(binary(n))%n==0, [1..5000]) \\ M. F. Hasler, Oct 11 2019

Formula

A032533 = { m : m divides A007088(m) }. - M. F. Hasler, Oct 11 2019

Extensions

Example and better description from Erich Friedman, Jul 21 2001
Edited by Erich Friedman, Feb 09 2002
Offset set to 1 by Giovanni Resta, Jul 13 2016
Name edited by Jon E. Schoenfield, Oct 25 2019

A108779 Numbers of the form (10^i)*(11^j), with i, j >= 0.

Original entry on oeis.org

1, 10, 11, 100, 110, 121, 1000, 1100, 1210, 1331, 10000, 11000, 12100, 13310, 14641, 100000, 110000, 121000, 133100, 146410, 161051, 1000000, 1100000, 1210000, 1331000, 1464100, 1610510, 1771561, 10000000, 11000000, 12100000, 13310000
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 26 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a108779 n = a108779_list !! (n-1)
    a108779_list = f $ singleton (1,0,0) where
       f s = y : f (insert (10 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
  • Mathematica
    n = 10^7; Flatten[Table[10^i*11^j, {i, 0, Log10[n]}, {j, 0, Log[11, n/10^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (10*11)/((10-1)*(11-1)) = 11/9. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(10)*log(11)*n)) / sqrt(110). - Vaclav Kotesovec, Sep 25 2020

A025639 Exponent of 2 (value of i) in n-th number of form 2^i*10^j.

Original entry on oeis.org

0, 1, 2, 3, 0, 4, 1, 5, 2, 6, 3, 0, 7, 4, 1, 8, 5, 2, 9, 6, 3, 0, 10, 7, 4, 1, 11, 8, 5, 2, 12, 9, 6, 3, 13, 0, 10, 7, 4, 14, 1, 11, 8, 5, 15, 2, 12, 9, 6, 16, 3, 13, 0, 10, 7, 17, 4, 14, 1, 11, 8, 18, 5, 15, 2, 12, 9, 19, 6, 16, 3, 13, 0, 10, 20, 7, 17, 4, 14, 1, 11, 21, 8, 18, 5, 15, 2, 12, 22, 9, 19
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025612.

A025684 Exponent of 10 (value of j) in n-th number of form 2^i*10^j.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 4, 1, 2, 3, 0, 4, 1, 2, 3, 0, 4, 1, 2, 3, 0, 4, 1, 5, 2, 3, 0, 4, 1, 5, 2, 3, 0, 4, 1, 5, 2, 3, 0, 4, 1, 5, 2, 6, 3, 0, 4, 1, 5, 2, 6, 3, 0, 4, 1, 5, 2, 6, 3, 0, 4, 1, 5, 2, 6, 3, 0, 7, 4, 1, 5, 2, 6, 3, 0, 7, 4, 1, 5
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025612.

A317804 Numbers of form 2^i*12^j, with i, j >= 0.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 384, 512, 576, 768, 1024, 1152, 1536, 1728, 2048, 2304, 3072, 3456, 4096, 4608, 6144, 6912, 8192, 9216, 12288, 13824, 16384, 18432, 20736, 24576, 27648, 32768, 36864, 41472, 49152, 55296, 65536
Offset: 1

Views

Author

Dario Ch, Sep 01 2018

Keywords

Crossrefs

Programs

  • Mathematica
    With[{max = 10^5}, Flatten[Table[2^i*12^j, {i, 0, Log2[max]}, {j, 0, Log[12, max/2^i]}]] // Sort] (* Amiram Eldar, Mar 29 2025 *)
  • Python
    from heapq import heappush, heappop
    def sequence():
        pq = [1]
        seen = set(pq)
        while True:
            value = heappop(pq)
            yield value
            seen.remove(value)
            for x in 2 * value, 12 * value:
                if x not in seen:
                    heappush(pq, x)
                    seen.add(x)
    seq = sequence()
    finalsequence_list = [next(seq) for i in range(100)]  # Dario Ch, Sep 01 2018
    
  • Python
    from sympy import integer_log
    def A317804(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((x//12**i).bit_length() for i in range(integer_log(x,12)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 26 2025

Formula

Sum_{n>=1} 1/a(n) = 24/11. - Amiram Eldar, Mar 29 2025

A036311 Composite numbers whose prime factors contain no digits other than 2 and 5.

Original entry on oeis.org

4, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 125, 128, 160, 200, 250, 256, 320, 400, 500, 512, 625, 640, 800, 1000, 1024, 1250, 1280, 1600, 2000, 2048, 2500, 2560, 3125, 3200, 4000, 4096, 5000, 5120, 6250, 6400, 8000, 8192, 10000, 10240, 12500, 12800
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

A003592 with 1, 2 and 5 removed. - Robert Israel, Apr 29 2018

Crossrefs

Programs

  • Magma
    [n: n in [4..13000] | not IsPrime(n) and forall{f: f in PrimeDivisors(n) | Intseq(f) subset [2,5]}]; // Bruno Berselli, Aug 26 2013
  • Maple
    N:= 20000: # to get all terms <= N
    S:= {seq(seq(2^i*5^j,i=0..ilog2(N/5^j)),j=0..floor(log[5](N)))} minus {1,2,5}:
    sort(convert(S,list)); # Robert Israel, Apr 29 2018
  • Mathematica
    dpfQ[n_]:=Module[{d=Union[Flatten[IntegerDigits/@Transpose[FactorInteger[n]][[1]]]]}, !PrimeQ[n]&&(d == {2}||d == {5}||d == {2, 5})]; Select[Range[15000], dpfQ] (* Vincenzo Librandi, Aug 25 2013 *)

Formula

Sum_{n>=1} 1/a(n) = 4/5. - Amiram Eldar, May 18 2022~
Previous Showing 11-16 of 16 results.