cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A026956 Self-convolution of array T given by A026615.

Original entry on oeis.org

1, 2, 11, 52, 200, 742, 2752, 10278, 38670, 146426, 557408, 2131318, 8179646, 31491202, 121568150, 470404274, 1823968074, 7085220834, 27567196704, 107414120214, 419080195374, 1636990646274, 6401210885934, 25055584929954, 98160790785714, 384885441746202, 1510279309724502
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select n+1 else Catalan(n-2)*(49*n^2-105*n+48)/n - 6: n in [0..40]]; // G. C. Greubel, Jun 17 2024
    
  • Mathematica
    Table[If[n==0, 1, CatalanNumber[n-2]*(49*n^2-105*n+48)/n -6], {n,0,40}] (* G. C. Greubel, Jun 17 2024 *)
  • SageMath
    [1,2]+[catalan_number(n-2)*(49*n^2-105*n+48)/n -6 for n in range(2,41)] # G. C. Greubel, Jun 17 2024

Formula

From G. C. Greubel, Jun 17 2024: (Start)
a(n) = Sum_{k=0..n} A026615(n, k) * A026615(n, n-k).
a(n) = A000108(n-2)*(49*n^2 - 105*n + 48)/n - 6, for n >= 1, with a(0) = 1.
G.f.: (4 - 8*x + 5*x^2 - x^3 - (3 - x + 4*x^2)*sqrt(1-4*x))/((1-x)*sqrt(1-4*x)).
E.g.f.: (1/6)*( 18 + 24*x - 36*exp(x) + 4*exp(2*x)*(6 - 6*x + x^2) * BesselI(0, 2*x) + x*exp(2*x)*(23 - 4*x)*BesselI(1, 2*x) ). (End)

Extensions

More terms from Sean A. Irvine, Oct 20 2019

A026957 a(n) = Sum_{k=0..n-1} T(n,k) * T(n,k+1), with T given by A026615.

Original entry on oeis.org

1, 6, 35, 154, 613, 2362, 9028, 34510, 132241, 508210, 1958460, 7565906, 29292820, 113633930, 441579702, 1718642278, 6698377449, 26139863330, 102125977396, 399415127682, 1563614796608, 6126581578954, 24024810462810, 94281930087290, 370254213115948, 1454967778894282
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [(n-1)*Binomial(2*n,n-1)*(49*n^3 -105*n^2 +62*n -24)/( 24*Binomial(2*n,4)) -2*(2*n-1): n in [2..40]]; // G. C. Greubel, Jun 17 2024
    
  • Mathematica
    Table[If[n==1, 1, (n-1)*Binomial[2*n,n-1]*(49*n^3 -105*n^2 +62*n -24 )/(24*Binomial[2*n,4]) - 2*(2*n-1)], {n,40}] (* G. C. Greubel, Jun 17 2024 *)
  • SageMath
    [1]+[(n-1)*binomial(2*n,n-1)*(49*n^3-105*n^2+62*n-24 )/( 24*binomial(2*n, 4)) -2*(2*n-1) for n in range(2,41)] # G. C. Greubel, Jun 17 2024

Formula

a(n) = (n-1)*binomial(2*n, n-1)*(49*n^3 - 105*n^2 + 62*n - 24 )/( 24*binomial(2*n, 4)) - 2*(2*n-1), for n >= 2, with a(1) = 1. - G. C. Greubel, Jun 17 2024

Extensions

More terms from Sean A. Irvine, Oct 20 2019

A026958 a(n) = Sum_{k=0..n-2} T(n,k) * T(n,k+2), with T given by A026615.

Original entry on oeis.org

1, 10, 69, 340, 1476, 6074, 24419, 97136, 384428, 1517422, 5981070, 23556746, 92743296, 365078146, 1437124303, 5657887016, 22279053380, 87749051950, 345704345066, 1362361338578, 5370436417996, 21176724230654, 83529562154498, 329573910914930, 1300752571946396
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n eq 2 select 1 else Binomial(2*n,n+2)*(49*n^4 -154*n^3 + 209*n^2 -200*n +108)/(24*Binomial(2*n,4)) -2*(n^2-2*n+2): n in [2..40]]; // G. C. Greubel, Jun 17 2024
    
  • Mathematica
    Table[Binomial[2*n,n+2]*(49*n^4 -154*n^3 +209*n^2 -200*n +108)/(24* Binomial[2*n,4]) -2*(n^2-2*n+2) + Boole[n==2], {n,2,40}] (* G. C. Greubel, Jun 17 2024 *)
  • SageMath
    [binomial(2*n,n+2)*(49*n^4 -154*n^3 +209*n^2 -200*n +108 )/(24*binomial(2*n,4)) -2*(n^2-2*n+2) +int(n==2) for n in range(2,41)] # G. C. Greubel, Jun 17 2024

Formula

a(n) = binomial(2*n, n+2)*(49*n^4 - 154*n^3 + 209*n^2 - 200*n + 108)/(24*binomial(2*n, 4)) -2*(n^2 - 2*n + 2) + [n=2]. - G. C. Greubel, Jun 17 2024

Extensions

More terms from Sean A. Irvine, Oct 20 2019

A026959 a(n) = Sum_{k=0..n-3} T(n,k) * T(n,k+3), with T given by A026615.

Original entry on oeis.org

1, 14, 115, 640, 3049, 13494, 57491, 239768, 986976, 4027666, 16335660, 65955960, 265386251, 1064993622, 4264898875, 17051078256, 68080259516, 271537515786, 1082098938452, 4309269809044, 17151303222746, 68232856509950, 271350536990740, 1078796298028680, 4287906741748940
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n eq 3 select 1 else Binomial(2*n,n+3)*(49*n^4 -154*n^3 +279*n^2 -390*n +288)/(24* Binomial(2*n,4)) -(n-2)*(2*n^2-5*n+9)/3: n in [3..40]]; // G. C. Greubel, Jun 17 2024
    
  • Mathematica
    Table[(2*n-4)!*(49*n^4 -154*n^3 +279*n^2 -390*n +288)/((n-3)!*(n+3)!) - (n-2)*(2*n^2-5*n+9)/3 +Boole[n==3], {n,3,40}] (* G. C. Greubel, Jun 17 2024 *)
  • SageMath
    [binomial(2*n,n+3)*(49*n^4 -154*n^3 +279*n^2 -390*n +288)/(24*binomial(2*n,4)) -(1/3)*(n-2)*(2*n^2-5*n+9) +int(n==3) for n in range(3,41)] # G. C. Greubel, Jun 17 2024

Formula

a(n) = binomial(2*n, n+3)*(49*n^4 - 154*n^3 + 279*n^2 - 390*n + 288)/(4! * binomial(2*n, 4)) - (1/3)*(n-2)*(2*n^2 - 5*n + 9) + [n=3]. - G. C. Greubel, Jun 17 2024

Extensions

More terms from Sean A. Irvine, Oct 20 2019

A026960 a(n) = Sum_{k=0..n} (k+1) * A026615(n,k).

Original entry on oeis.org

1, 3, 10, 30, 78, 189, 440, 999, 2230, 4917, 10740, 23283, 50162, 107505, 229360, 487407, 1032174, 2179053, 4587500, 9633771, 20185066, 42205161, 88080360, 183500775, 381681638, 792723429, 1644167140, 3405774819, 7046430690, 14562623457, 30064771040
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 2*n+1 else 7*(n+2)*2^(n-3) - n - 2: n in [0..40]]; // G. C. Greubel, Jun 16 2024
    
  • Mathematica
    Join[{1,3},Table[7(n+2)2^(n-3)-n-2,{n,2,30}]] (* or *) LinearRecurrence[ {6,-13,12,-4},{1,3,10,30,78,189},30] (* Harvey P. Dale, Oct 31 2015 *)
  • PARI
    Vec((1-3*x+5*x^2-3*x^3-4*x^4+3*x^5)/((1-x)^2*(1-2*x)^2) + O(x^40)) \\ Colin Barker, Feb 18 2016
    
  • SageMath
    [7*(n+2)*2^(n-3) - n - 2 + (5/4)*int(n==0) + (3/4)*int(n==1) for n in range(41)] # G. C. Greubel, Jun 16 2024

Formula

For n>1, a(n) = 7*(n+2)*2^(n-3) - n - 2.
From Colin Barker, Feb 18 2016: (Start)
a(n) = 6*a(n-1)-13*a(n-2)+12*a(n-3)-4*a(n-4) for n>5
G.f.: (1-3*x+5*x^2-3*x^3-4*x^4+3*x^5) / ((1-x)^2*(1-2*x)^2).
(End)

A108765 Expansion of g.f. (1 - x + x^2)/((1-3*x)*(x-1)^2).

Original entry on oeis.org

1, 4, 14, 45, 139, 422, 1272, 3823, 11477, 34440, 103330, 310001, 930015, 2790058, 8370188, 25110579, 75331753, 225995276, 677985846, 2033957557, 6101872691, 18305618094, 54916854304, 164750562935, 494251688829, 1482755066512
Offset: 0

Views

Author

Creighton Dement, Jun 24 2005

Keywords

Comments

Superseeker suggests a(n+2) - 2*a(n+1) + a(n) = 7*3^n = A005032(n).
Inverse binomial transform gives match with first differences of A026622.
Floretion Algebra Multiplication Program, FAMP Code: kbasefor[(- 'j + 'k - 'ii' - 'ij' - 'ik')], vesfor = A000004, Fortype: 1A, Roktype (leftfactor) is set to:Y[sqa.Findk()] = Y[sqa.Findk()] + Math.signum(Y[sqa.Findk()])*p (internal program code)

Crossrefs

Programs

  • Mathematica
    s=1;lst={s};Do[s+=(s+(n+=s));AppendTo[lst, s], {n, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 11 2008 *)
    CoefficientList[Series[(1-x+x^2)/((1-3x)(x-1)^2),{x,0,40}],x] (* or *) LinearRecurrence[{5,-7,3},{1,4,14},40] (* Harvey P. Dale, Dec 11 2012 *)

Formula

From Rolf Pleisch, Feb 10 2008: (Start)
a(0) = 1; a(n) = 3*a(n-1) + n.
a(n) = (7*3^n - 2*n - 3)/4. (End)
a(0)=1, a(1)=4, a(2)=14, a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3). - Harvey P. Dale, Dec 11 2012

A174317 a(0)=1, a(1)=2, a(2)=1; for n>2, a(n) = 7*2^(n-3)-2.

Original entry on oeis.org

1, 2, 1, 5, 12, 26, 54, 110, 222, 446, 894, 1790, 3582, 7166, 14334, 28670, 57342, 114686, 229374, 458750, 917502, 1835006, 3670014, 7340030, 14680062, 29360126, 58720254, 117440510, 234881022, 469762046, 939524094, 1879048190, 3758096382
Offset: 0

Views

Author

Richard Choulet, Mar 15 2010

Keywords

Examples

			a(4) = 14-2 = 12.
a(5) = 7*4-2 = 26.
		

Crossrefs

Programs

  • Maple
    taylor(1+2*z+z^2+5*z^3-((2*z^4)/(1-z))+((14*z^4)/(1-2*z)),z=0,50);

Formula

G.f: (1+x-x^2+4*x^3-7*x^4)/(1-x)+(14*x^4)/(1-2*x).
a(n) = A026622(n-1), n>2. a(n) = A176448(n-3), n>2. - R. J. Mathar, Mar 01 2016

Extensions

Definition edited by Olivier Gérard, Oct 24 2012
Previous Showing 11-17 of 17 results.