A109244
A tree-node counting triangle.
Original entry on oeis.org
1, 1, 1, 4, 2, 1, 13, 7, 3, 1, 46, 24, 11, 4, 1, 166, 86, 40, 16, 5, 1, 610, 314, 148, 62, 22, 6, 1, 2269, 1163, 553, 239, 91, 29, 7, 1, 8518, 4352, 2083, 920, 367, 128, 37, 8, 1, 32206, 16414, 7896, 3544, 1461, 541, 174, 46, 9, 1, 122464, 62292, 30086, 13672, 5776, 2232
Offset: 0
Rows begin:
1;
1,1;
4,2,1;
13,7,3,1;
46,24,11,4,1;
166,86,40,16,5,1;
-
Flat(List([0..12], n-> List([0..n], k-> Sum([0..n], j-> (-1)^(n-j)*Binomial(n+j-k, j-k) )))); # G. C. Greubel, Feb 19 2019
-
[[(&+[(-1)^(n-j)*Binomial(n+j-k, j-k): j in [0..n]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 19 2019
-
Table[Sum[(-1)^(n-j)*Binomial[n+j-k, j-k], {j,0,n}], {n,0,12}, {k,0,n}] //Flatten (* G. C. Greubel, Feb 19 2019 *)
-
{T(n,k) = sum(j=0,n, (-1)^(n-j)*binomial(n+j-k, j-k))};
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 19 2019
-
[[sum((-1)^(n-j)*binomial(n+j-k, j-k) for j in (0..n)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 19 2019
A192368
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (2,0), (0,2), (1,1).
Original entry on oeis.org
1, 1, 6, 19, 94, 396, 1870, 8541, 40284, 189274, 899260, 4281168, 20487156, 98299384, 473118174, 2282322211, 11034087438, 53443135944, 259283934816, 1259795078566, 6129223177272, 29856164309124, 145592506783224, 710686739172096, 3472285996766556, 16979257639328076
Offset: 0
-
s := RootOf( 16*x*(3*s+1)*s+(s^2-18*s+1)*(s-1), s):
ogf := -16*(3*s+1)*s^(3/2)/(3*s^4+2*s^3-76*s^2+6*s+1):
series(ogf, x=0, 20); # Mark van Hoeij, Apr 16 2013
# second Maple program:
b:= proc(x, y) option remember;
`if`(min(x, y)<0, 0, `if`(max(x, y)=0, 1,
b(x-1, y)+b(x-2, y)+b(x, y-2)+b(x-1, y-1)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..35); # Alois P. Heinz, May 16 2017
-
a[0, 0] = 1; a[n_, k_] /; n >= 0 && k >= 0 := a[n, k] = a[n, k - 1] + a[n, k - 2] + a[n - 1, k - 1] + a[n - 2, k]; a[, ] = 0;
a[n_] := a[n, n];
a /@ Range[0, 25] (* Jean-François Alcover, Oct 14 2019 *)
-
/* same as in A092566 but use */
steps=[[1,0], [2,0], [0,2], [1,1]];
/* Joerg Arndt, Jun 30 2011 */
A220074
Triangle read by rows giving coefficients T(n,k) of [x^(n-k)] in Sum_{i=0..n} (x-1)^i, 0 <= n <= k.
Original entry on oeis.org
1, 1, 0, 1, -1, 1, 1, -2, 2, 0, 1, -3, 4, -2, 1, 1, -4, 7, -6, 3, 0, 1, -5, 11, -13, 9, -3, 1, 1, -6, 16, -24, 22, -12, 4, 0, 1, -7, 22, -40, 46, -34, 16, -4, 1, 1, -8, 29, -62, 86, -80, 50, -20, 5, 0, 1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1
Offset: 0
Triangle begins:
1;
1, 0;
1, -1, 1;
1, -2, 2, 0;
1, -3, 4, -2, 1;
1, -4, 7, -6, 3, 0;
1, -5, 11, -13, 9, -3, 1;
1, -6, 16, -24, 22, -12, 4, 0;
1, -7, 22, -40, 46, -34, 16, -4, 1;
1, -8, 29, -62, 86, -80, 50, -20, 5, 0;
1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1;
1, -10, 46, -128, 239, -314, 296, -200, 95, -30, 6, 0;
...
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Dmitry Efimov, Hafnian of two-parameter matrices, arXiv:2101.09722 [math.CO], 2021.
- Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
- Ângela Mestre, José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- OEIS Wiki, Autosequence
-
Flat(List([0..12], n-> List([0..n], k-> Sum([0..k], j-> (-1)^j*Binomial(n-k+j, j))))); # G. C. Greubel, Feb 18 2019
-
[[(&+[(-1)^j*Binomial(n-k+j, j): j in [0..k]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 18 2019
-
A059259A := proc(n,k)
1/(1+y)/(1-x-y) ;
coeftayl(%,x=0,n) ;
coeftayl(%,y=0,k) ;
end proc:
A059259 := proc(n,k)
A059259A(n-k,k) ;
end proc:
A220074 := proc(i,j)
(-1)^j*A059259(i,j) ;
end proc: # R. J. Mathar, May 14 2014
-
Table[Sum[(-1)^i*Binomial[n-k+i,i], {i, 0, k}], {n, 0, 12}, {k, 0, n} ]//Flatten (* Michael De Vlieger, Jan 27 2016 *)
-
{T(n,k) = sum(j=0,k, (-1)^j*binomial(n-k+j,j))};
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 18 2019
-
[[sum((-1)^j*binomial(n-k+j,j) for j in (0..k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 18 2019
Definition and comments clarified by
Li-yao Xia, May 15 2014
A387085
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(2*n+1,k).
Original entry on oeis.org
1, 0, 4, 8, 36, 120, 456, 1680, 6340, 23960, 91224, 348656, 1337896, 5149872, 19877904, 76907808, 298176516, 1158168792, 4505865144, 17555689008, 68490100536, 267518448912, 1046041377264, 4094231982048, 16039426479336, 62887835652720, 246761907761776, 968943740083040
Offset: 0
-
[&+[(-3)^(n-k) * Binomial(2*n+1,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
-
Table[Sum[(-3)^(n-k)*Binomial[2*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
-
a(n) = sum(k=0, n, (-3)^(n-k)*binomial(2*n+1, k));
A109078
Number of symmetric Dyck paths of semilength n and having no hills (i.e., no peaks at level 1).
Original entry on oeis.org
1, 0, 1, 2, 4, 6, 13, 22, 46, 80, 166, 296, 610, 1106, 2269, 4166, 8518, 15792, 32206, 60172, 122464, 230252, 467842, 884236, 1794196, 3406104, 6903352, 13154948, 26635774, 50922986, 103020253, 197519942, 399300166, 767502944, 1550554582
Offset: 0
a(4)=4 because we have uudduudd, uudududd, uuududdd and uuuudddd, where u=(1,1), d=(1,-1).
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 2*(1-x-x*Sqrt(1-4*x^2)+2*x^2 +Sqrt(1-4*x^2))/(1+Sqrt(1-4*x^2)-2*x)/(1+Sqrt(1-4*x^2)+2*x^2) )); // G. C. Greubel, Apr 29 2019
-
g:=2*(1-z-z*sqrt(1-4*z^2)+2*z^2+sqrt(1-4*z^2))/(1+sqrt(1-4*z^2)-2*z)/(1+sqrt(1-4*z^2)+2*z^2): gser:=series(g,z=0,39): 1, seq(coeff(gser,z^n),n=1..36);
-
CoefficientList[Series[2*(1-x-x*Sqrt[1-4*x^2]+2*x^2+Sqrt[1-4*x^2])/(1+ Sqrt[1-4*x^2]-2*x)/(1+Sqrt[1-4*x^2]+2*x^2), {x, 0, 40}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
-
my(x='x+O('x^40)); Vec(2*(1-x-x*sqrt(1-4*x^2)+2*x^2 +sqrt(1-4*x^2))/(1+sqrt(1-4*x^2)-2*x)/(1+sqrt(1-4*x^2)+2*x^2)) \\ G. C. Greubel, Mar 16 2017
-
(2*(1-x-x*sqrt(1-4*x^2)+2*x^2 +sqrt(1-4*x^2))/(1+sqrt(1-4*x^2)-2*x)/(1+sqrt(1-4*x^2)+2*x^2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 29 2019
A110541
A number triangle of sums of binomial products.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 5, 7, 4, 1, 1, 1, 8, 19, 13, 5, 1, 1, 1, 13, 51, 46, 21, 6, 1, 1, 1, 21, 141, 166, 89, 31, 7, 1, 1, 1, 34, 393, 610, 393, 151, 43, 8, 1, 1, 1, 55, 1107, 2269, 1761, 776, 235, 57, 9, 1, 1, 1, 89, 3139, 8518, 7985, 4056, 1363, 344, 73, 10, 1, 1
Offset: 0
Rows begin
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 3, 3, 1, 1;
1, 5, 7, 4, 1, 1;
1, 8, 19, 13, 5, 1, 1;
1, 13, 51, 46, 21, 6, 1, 1;
1, 21, 141, 166, 89, 31, 7, 1, 1;
As a number square read by antidiagonals, rows begin
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 3, 7, 13, 21, 31, ...
1, 5, 19, 46, 89, 151, ...
1, 8, 51, 166, 393, 776, ...
-
Flat(List([0..12], n-> List([0..n], k-> Sum([0..n-k], j-> Binomial((k-1)*(n-k)-(k-2)*j, j)*Binomial(j, n-k-j) )))); # G. C. Greubel, Feb 19 2019
-
[[(&+[Binomial((k-1)*(n-k)-(k-2)*j, j)*Binomial(j, n-k-j): j in [0..n-k]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 19 2019
-
T[n_, k_] := Sum[Binomial[(k-1)*(n-k) - (k-2)*j, j]*Binomial[j, n-k-j], {j, 0, n-k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 31 2017 *)
-
for(n=0,20, for(k=0,n, print1(sum(j=0,n-k, binomial((k-1)*(n-k) -(k-2)*j, j)*binomial(j, n-k-j)), ", "))) \\ G. C. Greubel, Aug 31 2017
-
[[sum(binomial((k-1)*(n-k) -(k-2)*j, j)*binomial(j, n-k-j) for j in (0..n-k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 19 2019
A128316
Triangle read by rows: A000012 * A128315 as infinite lower triangular matrices.
Original entry on oeis.org
1, 1, 1, 3, -1, 1, 2, 3, -2, 1, 4, -1, 4, -3, 1, 4, 3, -5, 7, -4, 1, 6, -3, 10, -13, 11, -5, 1, 4, 8, -14, 23, -24, 16, -6, 1, 7, -2, 15, -33, 46, -40, 22, -7, 1, 7, 4, -15, 47, -79, 86, -62, 29, -8, 1, 9, -6, 30, -73, 131, -166, 148, -91, 37, -9, 1, 7, 12, -37, 103, -204, 297, -314, 239, -128, 46, -10, 1
Offset: 1
First few rows of the triangle:
1;
1, 1;
3, -1, 1;
2, 3 -2, 1;
4, -1, 4, -3, 1;
4, 3, -5, 7, -4, 1;
6, -3, 10, -13, 11, -5, 1;
4, 8, -14, 23, -24, 16, -6, 1;
...
-
A128316:= func< n,k | (&+[(-1)^(j+k)*Floor(n/j)*Binomial(j-1,k-1): j in [k..n]]) >;
[A128316(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jun 23 2024
-
T[n_, k_]:= Sum[(-1)^(j+k)*Floor[n/j]*Binomial[j-1,k-1], {j,k,n}];
Table[T[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jun 23 2024 *)
-
def A128316(n,k): return sum((-1)^(j+k)*int(n//j)*binomial(j-1,k-1) for j in range(k,n+1))
flatten([[A128316(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jun 23 2024
a(28) = 1 inserted and more terms from
Georg Fischer, Jun 06 2023
A181933
a(n) = Sum_{k=0..n} binomial(n+k,k)*sin(Pi*(n+k)/2).
Original entry on oeis.org
0, 1, -3, 9, -30, 106, -385, 1421, -5304, 19966, -75658, 288222, -1102790, 4234868, -16312773, 63003869, -243896960, 946066678, -3676303578, 14308370014, -55768166380, 217640082188, -850345208538, 3325907590274, -13020993588680
Offset: 0
-
f[n_] := Sum[ Binomial[n + k, k] Sin[Pi (n + k)/2], {k, 0, n}]; Array[f, 25, 0]
-
makelist(coeff(taylor(1/2*(sqrt(4*x+1)*(1+x)-3*x-1)/(sqrt(4*x+1)*(x^2+3*x+1)-4*x^2-5*x-1),x,0,20),x,n),n,0,20); /* Vladimir Kruchinin, Mar 28 2016 */
-
x='x+O('x^50); concat([0], Vec((1/2)*(sqrt(4*x+1)*(1+x)-3*x-1)/(sqrt(4*x+1)*(x^2+3*x+1)-4*x^2-5*x-1))) \\ G. C. Greubel, Mar 24 2017
A237619
Riordan array (1/(1+x*c(x)), x*c(x)) where c(x) is the g.f. of Catalan numbers (A000108).
Original entry on oeis.org
1, -1, 1, 0, 0, 1, -1, 1, 1, 1, -2, 2, 3, 2, 1, -6, 6, 8, 6, 3, 1, -18, 18, 24, 18, 10, 4, 1, -57, 57, 75, 57, 33, 15, 5, 1, -186, 186, 243, 186, 111, 54, 21, 6, 1, -622, 622, 808, 622, 379, 193, 82, 28, 7, 1, -2120, 2120, 2742, 2120, 1312, 690, 311, 118, 36, 8, 1
Offset: 0
Triangle begins:
1;
-1, 1;
0, 0, 1;
-1, 1, 1, 1;
-2, 2, 3, 2, 1;
-6, 6, 8, 6, 3, 1;
-18, 18, 24, 18, 10, 4, 1;
-57, 57, 75, 57, 33, 15, 5, 1;
Production matrix begins:
-1, 1;
-1, 1, 1;
-1, 1, 1, 1;
-1, 1, 1, 1, 1;
-1, 1, 1, 1, 1, 1;
-1, 1, 1, 1, 1, 1, 1;
-1, 1, 1, 1, 1, 1, 1, 1;
-1, 1, 1, 1, 1, 1, 1, 1, 1;
-
A065602[n_, k_]:= A065602[n, k]= Sum[(k-1+2*j)*Binomial[2*(n-j)-k-1, n-1]/(2*(n - j) -k-1), {j,0,(n-k)/2}];
T[n_, k_]:= If[k==0, A065602[n, 0], If[n==1 && k==1, 1, A065602[n, k]]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 27 2022 *)
-
def A065602(n, k): return sum( (k+2*j-1)*binomial(2*n-2*j-k-1, n-1)/(2*n-2*j-k-1) for j in (0..(n-k)//2) )
def A237619(n, k):
if (n<2): return (-1)^(n-k)
elif (k==0): return A065602(n, 0)
else: return A065602(n, k)
flatten([[A237619(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 27 2022
A360211
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(2*n-3*k,n-2*k).
Original entry on oeis.org
1, 2, 5, 17, 61, 221, 812, 3021, 11344, 42899, 163146, 623320, 2390653, 9198879, 35494701, 137290466, 532149805, 2066501909, 8038146035, 31312535610, 122140123201, 477002869614, 1864912495716, 7298427590543, 28588888586743, 112080607196843, 439744801379594
Offset: 0
-
A360211 := proc(n)
add((-1)^k*binomial(2*n-3*k,n-2*k),k=0..floor(n/2)) ;
end proc:
seq(A360211(n),n=0..40) ; # R. J. Mathar, Mar 02 2023
-
a(n) = sum(k=0, n\2, (-1)^k*binomial(2*n-3*k, n-2*k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1+2*x^2/(1+sqrt(1-4*x)))))
Comments