cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A026983 a(n) = Sum_{k=0..n-2} T(n,k) * T(n,k+2), with T given by A026670.

Original entry on oeis.org

1, 8, 47, 224, 1130, 4868, 23404, 97230, 457264, 1868456, 8679894, 35162196, 162087345, 653396608, 2996092939, 12041970574, 55006554003, 220673343660, 1005105011265, 4027407386110, 18302390130349, 73278803406040, 332412585527847, 1330205838019114, 6025308727310905
Offset: 2

Views

Author

Keywords

Extensions

More terms from Sean A. Irvine, Oct 20 2019

A026984 a(n) = Sum_{k=0..n-3} T(n,k) * T(n,k+3), with T given by A026670.

Original entry on oeis.org

1, 10, 68, 394, 2011, 10258, 47327, 229186, 1007891, 4752128, 20351196, 94455408, 398021603, 1828645056, 7624936963, 34786976248, 144011195937, 653694082256, 2692363924059, 12174658758744, 49956496140401, 225233631148500, 921619221445645, 4145493852959640, 16926389947869331
Offset: 3

Views

Author

Keywords

Extensions

More terms from Sean A. Irvine, Oct 20 2019

A026985 a(n) = Sum_{k=0..n} (k+1) * A026670(n, k).

Original entry on oeis.org

1, 3, 10, 25, 69, 161, 412, 927, 2275, 5005, 11958, 25909, 60753, 130185, 301064, 639761, 1463787, 3090217, 7010750, 14722575, 33171193, 69357949, 155376996, 323702075, 721673251, 1498859829, 3327877658, 6893460863
Offset: 0

Views

Author

Keywords

A026725 Triangular array, T, read by rows: T(n,0) = T(n,n) = 1. For n >= 2 and 1<=k<=n-1, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is odd and k=n/2, otherwise T(n,k) = T(n-1,k-1) + T(n-1,k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 5, 7, 4, 1, 1, 6, 16, 11, 5, 1, 1, 7, 22, 27, 16, 6, 1, 1, 8, 29, 65, 43, 22, 7, 1, 1, 9, 37, 94, 108, 65, 29, 8, 1, 1, 10, 46, 131, 267, 173, 94, 37, 9, 1, 1, 11, 56, 177, 398, 440, 267, 131, 46, 10, 1, 1, 12, 67, 233
Offset: 0

Views

Author

Keywords

Comments

T(n+2,n) = A134869(n+1). - Philippe Deléham, Feb 01 2014

Examples

			Triangle begins:
1
1  1
1  2  1
1  4  3   1
1  5  7   4   1
1  6 16  11   5    1
1  7 22  27  16    6   1
1  8 29  65  43   22   7   1
1  9 37  94 108   65  29   8   1
1 10 46 131 267  173  94  37   9  1
1 11 56 177 398  440 267 131  46 10  1
1 12 67 233 575 1105 707 398 177 56 11 1
... - _Philippe Deléham_, Feb 01 2014
		

Crossrefs

Cf. A026674.

Programs

  • GAP
    T:= function(n,k)
        if k=0 or k=n then return 1;
        elif 2*k=n-1 then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    Flat(List([0..14], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jul 16 2019
  • Maple
    A026725 := proc(n,k)
        option remember;
        if n < 0 or k < 0 then
            0;
        elif k=0 or k=n then
            1;
        elif 2*k = n-1 then
          procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
        end if;
    end proc: # R. J. Mathar, Oct 21 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0||k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]];
    Table[T[n, k], {n,0,14}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 16 2019 *)
  • PARI
    T(n,k) = if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    for(n=0,11, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 16 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..14)] # G. C. Greubel, Jul 16 2019
    

Formula

T(n, k) = number of paths from (0, 0) to (n-k, k) in directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, i+1)-to-(i+1, i+2) for i >= 0.
Comment from Rick L. Shepherd, Aug 05 2002: Probably this should be changed to "and edges (i+1, i)-to-(i+2, i+1) for i >= 0."

Extensions

Title and offset corrected by G. C. Greubel, Jul 16 2019, again by R. J. Mathar, Oct 21 2019, again by Sean A. Irvine, Oct 25 2019

A026671 Number of lattice paths from (0,0) to (n,n) with steps (0,1), (1,0) and, when on the diagonal, (1,1).

Original entry on oeis.org

1, 3, 11, 43, 173, 707, 2917, 12111, 50503, 211263, 885831, 3720995, 15652239, 65913927, 277822147, 1171853635, 4945846997, 20884526283, 88224662549, 372827899079, 1576001732485, 6663706588179, 28181895551161, 119208323665543, 504329070986033, 2133944799315027
Offset: 0

Views

Author

Keywords

Comments

1, 1, 3, 11, 43, 173, ... is the unique sequence for which both the Hankel transform of the sequence itself and the Hankel transform of its left shift are the powers of 2 (A000079). For example, det[{{1, 1, 3}, {1, 3, 11}, {3, 11, 43}}] = det[{{1, 3, 11}, {3, 11, 43}, {11, 43, 173}}] = 4. - David Callan, Mar 30 2007
From Paul Barry, Jan 25 2009: (Start)
a(n) is the image of F(2n+2) under the Catalan matrix (1,xc(x)) where c(x) is the g.f. of A000108.
The sequence 1,1,3,... is the image of A001519 under (1,xc(x)). This sequence has g.f. given by 1/(1-x-2x^2/(1-3x-x^2/(1-2x-x^2/(1-2x-x^2/(1-... (continued fraction). (End)
Binomial transform of A111961. - Philippe Deléham, Feb 11 2009
From Paul Barry, Nov 03 2010: (Start)
The sequence 1,1,3,... has g.f. 1/(1-x/sqrt(1-4x)), INVERT transform of A000984.
It is an eigensequence of the sequence array for A000984. (End)

References

  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

Crossrefs

a(n) = T(2n-1, n-1), T given by A026736.
a(n) = T(2n, n), T given by A026670.
a(n) = T(2n+1, n+1), T given by A026725.
Row sums of triangle A054335.

Programs

  • GAP
    a:=[3,11,43];; for n in [4..30] do a[n]:=(2*(4*n-3)*a[n-1] - 3*(5*n-8)*a[n-2] - 2*(2*n-3)*a[n-3])/n; od; Concatenation([1], a); # G. C. Greubel, Jul 16 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/(Sqrt(1-4*x)-x) )); // G. C. Greubel, Jul 16 2019
    
  • Mathematica
    Table[SeriesCoefficient[1/(Sqrt[1-4*x]-x),{x,0,n}],{n,0,30}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • PARI
    {a(n)= if(n<0, 0, polcoeff( 1/(sqrt(1 -4*x +x*O(x^n)) -x), n))} /* Michael Somos, Apr 20 2007 */
    
  • PARI
    my(x='x+O('x^66)); Vec( 1/(sqrt(1-4*x)-x) ) \\ Joerg Arndt, May 04 2013
    
  • Sage
    (1/(sqrt(1-4*x)-x)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 16 2019
    

Formula

From Wolfdieter Lang, Mar 21 2000: (Start)
G.f.: 1/(sqrt(1-4*x)-x).
a(n) = Sum_{i=1..n} a(i-1)*binomial(2*(n-i), n-i) + binomial(2*n, n), n >= 1, a(0)=1. (End)
G.f.: 1/(1 -x -2*x*c(x)) where c(x) = g.f. for Catalan numbers A000108. - Michael Somos, Apr 20 2007
From Paul Barry, Jan 25 2009: (Start)
G.f.: 1/(1 - 3xc(x) + x^2*c(x)^2);
G.f.: 1/(1-3x-2x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-... (continued fraction).
a(0) = 1, a(n) = Sum_{k=0..n} (k/(2n-k))*C(2n-k,n-k)*F(2k+2). (End)
a(n) = Sum_{k=0..n} A039599(n,k) * A000045(k+2). - Philippe Deléham, Feb 11 2009
From Paul Barry, Feb 08 2009: (Start)
G.f.: 1/(1-x/(1-2x/(1-x/(1-x/(1-x/(1-x/(1-x/(1-... (continued fraction);
G.f. of 1,1,3,... is 1/(1-x-2x/(1-x/(1-x/(1-x/(1-... (continued fraction). (End)
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) = the upper left term in M^n, M = the infinite square production matrix:
3, 2, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
From Vaclav Kotesovec, Oct 08 2012: (Start)
D-finite with recurrence: n*a(n) = 2*(4*n-3)*a(n-1) - 3*(5*n-8)*a(n-2) - 2*(2*n-3)*a(n-3).
a(n) ~ (2+sqrt(5))^n/sqrt(5). (End)
a(n) = Sum_{k=0..n+1} 4^(n+1-k) * binomial(n-k/2,n+1-k). - Seiichi Manyama, Mar 30 2025
From Peter Luschny, Mar 30 2025: (Start)
a(n) = 4^n*(binomial(n-1/2, n)*hypergeom([1, (1-n)/2, -n/2], [1/2, 1/2-n], -1/4) + hypergeom([(1-n)/2, 1-n/2], [1-n], -1/4)/4) for n > 0.
a(n) = A001076(n) + A176280(n). (End)

A026674 a(n) = T(2n-1,n-1) = T(2n,n+1), T given by A026725.

Original entry on oeis.org

1, 4, 16, 65, 267, 1105, 4597, 19196, 80380, 337284, 1417582, 5965622, 25130844, 105954110, 447015744, 1886996681, 7969339643, 33670068133, 142301618265, 601586916703, 2543852427847, 10759094481491, 45513214057191, 192560373660245, 814807864164497
Offset: 1

Views

Author

Keywords

Crossrefs

Also a(n) = T(2n-1, n-1), T given by A026670.

Programs

  • GAP
    List([1..30], n-> Sum([1..n], k-> Binomial(2*n, n+k)*Fibonacci(k+1) *(k/n) )); # G. C. Greubel, Jul 16 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (-1+5*x +(1-x)*Sqrt(1-4*x))/(2*(1-4*x-x^2)) )); // G. C. Greubel, Jul 16 2019
    
  • Maple
    a := n -> add(binomial(2*n,n+k)*combinat:-fibonacci(1+k)*(k/n), k=1..n):
    seq(a(n), n=1..30); # Peter Luschny, Apr 28 2016
  • Mathematica
    a[n_] := Sum[Binomial[2n, n+k] Fibonacci[k+1] k/n, {k, 1, n}];
    Array[a, 30] (* Jean-François Alcover, Jun 21 2018, after Peter Luschny *)
  • Maxima
    a(n):=sum(k*binomial(2*n,n-k)*(sum(binomial(k-i,i),i,0,k/2)),k,1,n)/n; /* Vladimir Kruchinin, Apr 28 2016 */
    
  • PARI
    a(n)=sum(k=1,n,k*binomial(2*n,n-k)*sum(i=0,k\2,binomial(k-i,i)))/n \\ Charles R Greathouse IV, Apr 28 2016
    
  • Sage
    a=((-1+5*x +(1-x)*sqrt(1-4*x))/(2*(1-4*x-x^2))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jul 16 2019
    

Formula

G.f.: (1/2)*((1-x)/(sqrt(1-4*x)-x) - 1). - Ralf Stephan, Feb 05 2004
G.f.: x*c(x)^3/(1-x*c(x)^3) = (1-5*x -(1-x)*sqrt(1-4*x))/(2*(x^2+4*x-1)), c(x) the g.f. of A000108. - Paul Barry, Mar 19 2007
From Gary W. Adamson, Jul 11 2011: (Start)
a(n) is the upper left term in M^n, where M is the following infinite square production matrix:
1, 1, 0, 0, 0, 0, 0, ...
3, 1, 1, 0, 0, 0, 0, ...
6, 1, 1, 1, 0, 0, 0, ...
10, 1, 1, 1, 1, 0, 0, ...
15, 1, 1, 1, 1, 1, 0, ...
21, 1, 1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence n*a(n) +(-9*n+8)*a(n-1) +23*(n-2)*a(n-2) +(-11*n+48)*a(n-3) +2*(-2*n+7)*a(n-4)=0. - R. J. Mathar, Nov 26 2012
a(n) = (1/n)*Sum_{k=1..n} k*binomial(2*n,n-k)*Sum_{i=0..k/2} binomial(k-i,i). - Vladimir Kruchinin, Apr 28 2016
a(n) ~ (3 - sqrt(5)) * (2 + sqrt(5))^n / (2*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019
Previous Showing 11-16 of 16 results.