cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A185643 Triangular array E(n,k) counting, not necessarily connected, k-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 4, 5, 3, 1, 1, 0, 0, 2, 0, 16, 0, 4, 0, 1, 0, 0, 2, 15, 58, 59, 21, 5, 1, 1, 0, 0, 3, 0, 264, 0, 266, 0, 6, 0, 1, 0, 0, 4, 71, 1535, 7848, 7848, 1547, 94, 9, 1, 1, 0, 0, 5, 0, 10755, 0, 367860, 0, 10786, 0, 10, 0, 1
Offset: 1

Views

Author

Jason Kimberley, Feb 07 2013

Keywords

Examples

			01: 0;
02: 0, 0;
03: 0, 0, 1;
04: 0, 0, 0, 1;
05: 0, 0, 0, 0, 1;
06: 0, 0, 1, 1, 1, 1;
07: 0, 0, 1, 0, 2, 0, 1;
08: 0, 0, 1, 4, 5, 3, 1, 1;
09: 0, 0, 2, 0, 16, 0, 4, 0, 1;
10: 0, 0, 2, 15, 58, 59, 21, 5, 1, 1;
11: 0, 0, 3, 0, 264, 0, 266, 0, 6, 0, 1;
12: 0, 0, 4, 71, 1535, 7848, 7848, 1547, 94, 9, 1, 1;
13: 0, 0, 5, 0, 10755, 0, 367860, 0, 10786, 0, 10, 0, 1;
14: 0, 0, 6, 428, 87973, 3459379, 21609300, 21609300, 3459386, 88193, 540, 13, 1, 1;
15: 0, 0, 9, 0, 803973, 0, 1470293675, 0, 1470293676, 0, 805579, 0, 17, 0, 1;
16: 0, 0, 10, 3406, 8020967, 2585136353, 113314233804, 733351105934, 733351105934, 113314233813, 2585136741, 8037796, 4207, 21, 1, 1;
		

Crossrefs

The sum of the n-th row of this sequence is A198313(n).
Not necessarily connected k-regular simple graphs girth exactly 3: A198313 (any k), this sequence (triangle); fixed k: A026796 (k=2), A185133 (k=3), A185143 (k=4), A185153 (k=5), A185163 (k=6).

Formula

E(n,k) = A186733(n,k) + A210703(n,k), noting that A210703 is a tabf.
E(n,k) = A051031(n,k) - A185304(n,k), noting that A185304 is a tabf.

A339164 Number of compositions (ordered partitions) of n into distinct parts, the least being 3.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 2, 2, 2, 2, 8, 8, 14, 14, 20, 20, 50, 50, 80, 104, 134, 158, 212, 356, 410, 578, 752, 1040, 1238, 1646, 1964, 3236, 3674, 5066, 6368, 8720, 10862, 14078, 17180, 22076, 31802, 38378, 49784, 63824, 82670, 104150, 136220, 165980
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 25 2020

Keywords

Examples

			a(12) = 8 because we have [9, 3], [5, 4, 3], [5, 3, 4], [4, 5, 3], [4, 3, 5], [3, 9], [3, 5, 4] and [3, 4, 5].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember;
          `if`(n=0, p!, `if`((i-3)*(i+4)/2 `if`(n<3, 0, b(n-3$2, 1)):
    seq(a(n), n=0..55);  # Alois P. Heinz, Nov 25 2020
  • Mathematica
    nmax = 49; CoefficientList[Series[Sum[k! x^(k (k + 5)/2)/Product[1 - x^j, {j, 1, k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=1} k! * x^(k*(k + 5)/2) / Product_{j=1..k-1} (1 - x^j).

A185153 Number of not necessarily connected 5-regular simple graphs on 2n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 1, 3, 59, 7848, 3459379, 2585136353, 2807104852102
Offset: 0

Views

Author

Jason Kimberley, Mar 12 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 3: A198313 (any k), A185643 (triangle); fixed k: A026796 (k=2), A185133 (k=3), A185143 (k=4), this sequence (k=5), A185163 (k=6).

Formula

a(n) = A165626(n) - A185354(n).
a(n) = A184953(n) + A185053(n).

A185163 Number of not necessarily connected 6-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 4, 21, 266, 7848, 367860, 21609300, 1470293675, 113314233804, 9799685588955
Offset: 0

Views

Author

Jason Kimberley, Mar 21 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 3: A198313 (any k), A185643 (triangle); fixed k: A026796 (k=2), A185133 (k=3), A185143 (k=4), A185153 (k=5), this sequence (k=6).

Formula

a(n) = A165627(n) - A185364(n).
a(n) = A184953(n) + A185053(n).

A027195 Number of partitions of n into an even number of parts, the least being 3; also, a(n+3) = number of partitions of n into an odd number of parts, each >=3.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 10, 13, 16, 20, 24, 31, 36, 45, 54, 66, 78, 97, 114, 138, 164, 197, 232, 280, 328, 392, 461, 546, 639, 758, 884, 1041, 1215, 1425, 1657, 1941, 2250, 2624, 3041, 3534, 4084, 4740, 5465, 6321, 7280, 8399
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t,
         `if`(i>n, 0, b(n, i+1, t)+b(n-i, i, 1-t)))
        end:
    a:= n-> `if`(n<3, 0, b(n-3, 3, 0)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 18 2019
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i > n, 0, b[n, i + 1, t] + b[n - i, i, 1 - t]]];
    a[n_] := If[n < 3, 0, b[n - 3, 3, 0]];
    Array[a, 100] (* Jean-François Alcover, May 17 2020, after Alois P. Heinz *)

Formula

a(n) + A027189(n) = A026796(n). - R. J. Mathar, Oct 18 2019
a(n) ~ Pi^2 * exp(Pi*sqrt(2*n/3)) / (8 * 3^(3/2) * n^2). - Vaclav Kotesovec, May 17 2020
G.f.: x^6 * Sum_{k>=0} x^(6*k)/Product_{j=1..2*k+1} (1-x^j). - Seiichi Manyama, May 15 2023

A182806 Number of partitions of 3n into parts >= 3.

Original entry on oeis.org

1, 2, 4, 9, 17, 33, 60, 110, 191, 331, 556, 927, 1510, 2438, 3872, 6095, 9465, 14578, 22210, 33581, 50305, 74831, 110441, 161955, 235858, 341474, 491365, 703263, 1001014, 1417812, 1998184, 2803342
Offset: 1

Views

Author

Omar E. Pol, Dec 05 2010

Keywords

Comments

Essentially a trisection of A008483.

Crossrefs

Extensions

More terms from D. S. McNeil, Dec 05 2010

A182807 Number of partitions of 3n+1 into parts >= 3.

Original entry on oeis.org

1, 2, 5, 10, 21, 39, 73, 130, 230, 391, 660, 1087, 1775, 2842, 4510, 7056, 10945, 16779, 25519, 38438, 57480, 85241, 125577, 183669, 267016, 385714, 554102, 791483, 1124831, 1590370, 2238095, 3134927
Offset: 1

Views

Author

Omar E. Pol, Dec 05 2010

Keywords

Comments

Essentially a trisection of A008483.

Crossrefs

Extensions

More terms from D. S. McNeil, Dec 05 2010

A182808 Number of partitions of 3n+2 into parts >= 3.

Original entry on oeis.org

1, 3, 6, 13, 25, 49, 88, 158, 273, 468, 779, 1284, 2075, 3323, 5237, 8182, 12625, 19323, 29269, 44004, 65585, 97084, 142627, 208233, 302008, 435525, 624363, 890414, 1263105, 1783200, 2505329
Offset: 1

Views

Author

Omar E. Pol, Dec 05 2010

Keywords

Comments

Essentially a trisection of A008483.

Crossrefs

Extensions

More terms from D. S. McNeil, Dec 05 2010
Previous Showing 21-28 of 28 results.