cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A026832 Number of partitions of n into distinct parts, the least being odd.

Original entry on oeis.org

0, 1, 0, 2, 1, 2, 2, 4, 4, 5, 6, 8, 10, 12, 14, 18, 21, 24, 30, 36, 42, 50, 58, 68, 80, 93, 108, 126, 146, 168, 194, 224, 256, 294, 336, 384, 439, 500, 568, 646, 732, 828, 938, 1060, 1194, 1348, 1516, 1704, 1916, 2149, 2408, 2698, 3018, 3372, 3766, 4202, 4682
Offset: 0

Views

Author

Keywords

Comments

Fine's numbers L(n).
Also number of partitions of n such that if k is the largest part, then k occurs an odd number of times and each of the numbers 1,2,...,k-1 occurs at least once. Example: a(7)=4 because we have [3,2,1,1], [2,2,2,1], [2,1,1,1,1,1] and [1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 29 2006

Examples

			a(7)=4 because we have [7], [6,1], [4,3] and [4,2,1].
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 56, Eq. (26.28).

Crossrefs

Programs

  • Haskell
    a026832 n = p 1 n where
       p _ 0 = 1
       p k m = if m < k then 0 else p (k+1) (m-k) + p (k+1+0^(n-m)) m
    -- Reinhard Zumkeller, Jun 14 2012
  • Maple
    g:=sum(x^(2*k-1)*product(1+x^j, j=2*k..60), k=1..60): gser:=series(g, x=0, 55): seq(coeff(gser, x, n), n=0..53); # Emeric Deutsch, Mar 29 2006
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 `if`(n=0, 0, b(n$2)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 01 2019
  • Mathematica
    mx=53; Rest[CoefficientList[Series[Sum[x^(2*k-1) Product[1+x^j, {j, 2*k, mx}], {k, mx}], {x, 0, mx}], x]]  (* Jean-François Alcover, Apr 05 2011, after Emeric Deutsch *)
    Join[{0},Table[Length[Select[IntegerPartitions[n],OddQ[#[[-1]]]&&Max[Tally[#][[All,2]]] == 1&]],{n,60}]] (* Harvey P. Dale, May 14 2022 *)

Formula

G.f.: Sum_{k>=1} ((-1)^(k+1)*(-1+Product_{i>=k} (1+x^i))). - Vladeta Jovovic, Aug 26 2003
G.f.: Sum_{ k >= 1 } x^(k*(k+1)/2)/((1+x^k)*Product_{i=1..k} (1-x^i) ). - Vladeta Jovovic, Aug 10 2004
(1 + Sum_{n >= 1} a(n)q^n )*(1 + 2 Sum_{m>=1} (-1)^m*q^(m^2)) = Sum_{n >= 1} (-1)^n*q^((3*n^2+n)/2)/(1+q^n). [Fine]
G.f.: Sum_{k>=1} x^(2k-1)*Product_{j>=2k} (1 + x^j). - Emeric Deutsch, Mar 29 2006
a(n) ~ exp(Pi*sqrt(n/3)) / (2 * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Jun 09 2019

Extensions

More terms from Emeric Deutsch, Mar 29 2006
a(0)=0 prepended by Alois P. Heinz, Feb 01 2019

A103419 Number of compositions of n in which the least part is odd.

Original entry on oeis.org

1, 1, 4, 6, 14, 28, 59, 117, 239, 484, 980, 1973, 3973, 7989, 16054, 32227, 64653, 129628, 259787, 520440, 1042305, 2086938, 4177680, 8361557, 16733221, 33482909, 66992641, 134028938, 268128902, 536373288, 1072934271, 2146173471, 4292842170, 8586488355
Offset: 1

Views

Author

Vladeta Jovovic, Feb 04 2005

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, irem(i, 2), add(
          (t-> b(t, min(i, j, `if`(t>0, t, j))))(n-j), j=1..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 26 2015
  • Mathematica
    Rest[ CoefficientList[ Series[ Expand[ Sum[(1 - x)^2*x^(2n - 1)/((1 - x - x^(2n))*(1 - x - x^(2n - 1))), {n, 35}]], {x, 0, 35}], x]] (* Robert G. Wilson v, Feb 05 2005 *)

Formula

G.f.: Sum((1-x)^2*x^(2*n-1)/((1-x-x^(2*n))*(1-x-x^(2*n-1))), n=1..infinity).
G.f.: Sum(x^k/((1-x)^k*(1+x^k)),k=1..infinity). - Vladeta Jovovic, Mar 02 2008
a(n) ~ 2^(n-1). - Vaclav Kotesovec, May 01 2014

Extensions

More terms from Robert G. Wilson v, Feb 05 2005

A103420 Number of compositions of n in which the least part is even.

Original entry on oeis.org

0, 1, 0, 2, 2, 4, 5, 11, 17, 28, 44, 75, 123, 203, 330, 541, 883, 1444, 2357, 3848, 6271, 10214, 16624, 27051, 43995, 71523, 116223, 188790, 306554, 497624, 807553, 1310177, 2125126, 3446237, 5587517, 9057611, 14680337, 23789891, 38546834, 62449682, 101163024
Offset: 1

Views

Author

Vladeta Jovovic, Feb 04 2005

Keywords

Crossrefs

Programs

  • Maple
    N:= 50: # for a(1) .. a(N)
    G:= add(x^(2*n)/((1-x)^n*(1+x^n)),n=1..N/2):
    S:= series(G,x,N+1):
    [seq(coeff(S,x,i),i=1..N)]; # Robert Israel, Oct 23 2024
    # second Maple program:
    b:= proc(n, m) option remember; `if`(n=0, 1-
          irem(m, 2), add(b(n-j, min(m, j)), j=1..n))
        end:
    a:= n-> b(n, infinity):
    seq(a(n), n=1..42);  # Alois P. Heinz, Oct 23 2024
  • Mathematica
    Rest[ CoefficientList[ Series[ Expand[ Sum[(1 - x)^2*x^(2n)/((1 - x - x^(2n))*(1 - x - x^(2n + 1))), {n, 40}]], {x, 0, 40}], x]] (* Robert G. Wilson v, Feb 05 2005 *)

Formula

G.f.: Sum((1-x)^2*x^(2*n)/((1-x-x^(2*n))*(1-x-x^(2*n+1))), n=1..infinity).
G.f.: Sum(x^(2*n)/((1-x)^n*(1+x^n)),n=1..infinity). - Vladeta Jovovic, Mar 02 2008
a(n) ~ 1/sqrt(5) * ((1+sqrt(5))/2)^(n-1). - Vaclav Kotesovec, May 01 2014

Extensions

More terms from Robert G. Wilson v, Feb 05 2005

A103422 Number of compositions of n in which the greatest part is even.

Original entry on oeis.org

0, 1, 2, 5, 9, 18, 34, 66, 127, 249, 490, 972, 1936, 3874, 7772, 15623, 31439, 63308, 127506, 256782, 516970, 1040340, 2092450, 4206146, 8449953, 16965459, 34042784, 68272206, 136847328, 274168858, 549042730, 1099050180, 2199222960
Offset: 1

Views

Author

Vladeta Jovovic, Feb 04 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[ CoefficientList[ Series[ Expand[ Sum[(1 - x)^2*x^(2n)/((1 - 2x + x^(2n))*(1 - 2x + x^(2n + 1))), {n, 35}]], {x, 0, 35}], x]] (* Robert G. Wilson v, Feb 05 2005 *)

Formula

G.f.: Sum((1-x)^2*x^(2*n)/((1-2*x+x^(2*n))*(1-2*x+x^(2*n+1))), n=1..infinity).

Extensions

More terms from Robert G. Wilson v, Feb 05 2005

A341447 Heinz numbers of integer partitions whose only even part is the smallest.

Original entry on oeis.org

3, 7, 13, 15, 19, 29, 33, 37, 43, 51, 53, 61, 69, 71, 75, 77, 79, 89, 93, 101, 107, 113, 119, 123, 131, 139, 141, 151, 161, 163, 165, 173, 177, 181, 193, 199, 201, 217, 219, 221, 223, 229, 239, 249, 251, 255, 263, 271, 281, 287, 291, 293, 299, 309, 311, 317
Offset: 1

Views

Author

Gus Wiseman, Feb 13 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose only even prime index (counting multiplicity) is the smallest.

Examples

			The sequence of partitions together with their Heinz numbers begins:
      3: (2)         77: (5,4)     165: (5,3,2)
      7: (4)         79: (22)      173: (40)
     13: (6)         89: (24)      177: (17,2)
     15: (3,2)       93: (11,2)    181: (42)
     19: (8)        101: (26)      193: (44)
     29: (10)       107: (28)      199: (46)
     33: (5,2)      113: (30)      201: (19,2)
     37: (12)       119: (7,4)     217: (11,4)
     43: (14)       123: (13,2)    219: (21,2)
     51: (7,2)      131: (32)      221: (7,6)
     53: (16)       139: (34)      223: (48)
     61: (18)       141: (15,2)    229: (50)
     69: (9,2)      151: (36)      239: (52)
     71: (20)       161: (9,4)     249: (23,2)
     75: (3,3,2)    163: (38)      251: (54)
		

Crossrefs

These partitions are counted by A087897, shifted left once.
Terms of A340933 can be factored into elements of this sequence.
The odd version is A341446.
A000009 counts partitions into odd parts, ranked by A066208.
A001222 counts prime factors.
A005843 lists even numbers.
A026804 counts partitions whose least part is odd, ranked by A340932.
A026805 counts partitions whose least part is even, ranked by A340933.
A027187 counts partitions with even length/max, ranked by A028260/A244990.
A031215 lists even-indexed primes.
A055396 selects least prime index.
A056239 adds up prime indices.
A058696 counts partitions of even numbers, ranked by A300061.
A061395 selects greatest prime index.
A066207 lists numbers with all even prime indices.
A112798 lists the prime indices of each positive integer.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],EvenQ[First[primeMS[#]]]&&And@@OddQ[Rest[primeMS[#]]]&]

A363094 Number of partitions of n whose least part is a multiple of 3.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 1, 1, 3, 2, 3, 6, 6, 7, 11, 11, 14, 21, 24, 29, 38, 44, 54, 69, 81, 98, 123, 144, 174, 213, 253, 300, 363, 427, 508, 608, 716, 846, 1004, 1176, 1384, 1631, 1908, 2230, 2616, 3046, 3553, 4143, 4813, 5586, 6492, 7509, 8693, 10057, 11608, 13383, 15435, 17753, 20418, 23463, 26923, 30864
Offset: 1

Views

Author

Seiichi Manyama, May 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; Rest[CoefficientList[Series[Sum[x^(3*k)/QPochhammer[x^(3*k), x], {k, 1, nmax/3}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, May 20 2023 *)
  • PARI
    my(N=70, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/prod(j=3*k, N, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(3*k)/Product_{j>=3*k} (1-x^j).
a(n) ~ Pi^2 * exp(Pi*sqrt(2*n/3)) / (4 * 3^(3/2) * n^2) * (1 - (3*sqrt(6)/Pi + 109*Pi*sqrt(6)/144)/sqrt(n)). - Vaclav Kotesovec, May 21 2023

A363095 Number of partitions of n whose least part is a multiple of 4.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 3, 2, 3, 3, 7, 6, 8, 9, 13, 13, 17, 19, 28, 30, 38, 43, 56, 62, 76, 87, 110, 124, 151, 173, 211, 241, 289, 332, 399, 456, 539, 620, 733, 838, 983, 1127, 1322, 1513, 1761, 2016, 2343, 2677, 3096, 3536, 4083, 4655, 5355, 6101, 7005, 7969, 9124, 10370, 11856, 13453, 15340
Offset: 1

Views

Author

Seiichi Manyama, May 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; Rest[CoefficientList[Series[Sum[x^(4*k)/QPochhammer[x^(4*k), x], {k, 1, nmax/4}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, May 20 2023 *)
  • PARI
    my(N=70, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/prod(j=4*k, N, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(4*k)/Product_{j>=4*k} (1-x^j).
a(n) ~ Pi^3 * exp(Pi*sqrt(2*n/3)) / (3 * 2^(5/2) * n^(5/2)) * (1 - (5*sqrt(6)/Pi + 169*Pi*sqrt(6)/144)/sqrt(n)). - Vaclav Kotesovec, May 21 2023

A363096 Number of partitions of n whose least part is a multiple of 5.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 1, 3, 2, 3, 3, 4, 7, 7, 8, 10, 11, 15, 16, 19, 22, 27, 34, 39, 46, 54, 63, 76, 86, 101, 117, 136, 161, 186, 214, 249, 287, 335, 384, 445, 509, 588, 677, 776, 888, 1020, 1163, 1334, 1519, 1735, 1975, 2253, 2564, 2917, 3312, 3762, 4265, 4842, 5477, 6203, 7012, 7928
Offset: 1

Views

Author

Seiichi Manyama, May 19 2023

Keywords

Comments

In general, for m > 0, if g.f. = Sum_{k>=1} x^(m*k)/Product_{j>=m*k} (1-x^j), then a(n) ~ Pi^(m-1) * (m-1)! * exp(Pi*sqrt(2*n/3)) / (2^(3/2) * 6^(m/2) * n^((m+1)/2)) * (1 - (m*(m+1)/(4*Pi) + (6*m^2 + 18*m + 1 + c)*Pi/144)/sqrt(n/6)), where c = 0 for m > 1 and c = -24 for m = 1. - Vaclav Kotesovec, May 21 2023

Crossrefs

Programs

  • Mathematica
    nmax = 60; Rest[CoefficientList[Series[Sum[x^(5*k)/QPochhammer[x^(5*k), x], {k, 1, nmax/5}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, May 20 2023 *)
  • PARI
    my(N=70, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(5*k)/prod(j=5*k, N, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(5*k)/Product_{j>=5*k} (1-x^j).
a(n) ~ Pi^4 * exp(Pi*sqrt(2*n/3)) / (2*3^(3/2)*n^3) * (1 - (15*sqrt(6)/(2*Pi) + 241*Pi*sqrt(6)/144) / sqrt(n)). - Vaclav Kotesovec, May 21 2023

A103421 Number of compositions of n in which the greatest part is odd.

Original entry on oeis.org

1, 1, 2, 3, 7, 14, 30, 62, 129, 263, 534, 1076, 2160, 4318, 8612, 17145, 34097, 67764, 134638, 267506, 531606, 1056812, 2101854, 4182462, 8327263, 16588973, 33066080, 65945522, 131588128, 262702054, 524699094, 1048433468, 2095744336
Offset: 1

Views

Author

Vladeta Jovovic, Feb 04 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[ CoefficientList[ Series[ Expand[ Sum[(1 - x)^2*x^(2n - 1)/((1 - 2x + x^(2n - 1))*(1 - 2x + x^(2n))), {n, 35}]], {x, 0, 35}], x]] (* Robert G. Wilson v, Feb 05 2005 *)

Formula

G.f.: Sum((1-x)^2*x^(2*n-1)/((1-2*x+x^(2*n-1))*(1-2*x+x^(2*n))), n=1..infinity).
a(n) + A103422(n) = 2^(n-1). - R. J. Mathar, Mar 24 2018

Extensions

More terms from Robert G. Wilson v, Feb 05 2005
Previous Showing 11-19 of 19 results.