cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A319854 Number of ways to write n as the sum of 4 positive integers a, b, c, d such that d < b and a/b - c/d = (a - c)/(b + d).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 1, 1, 3, 1, 1, 1, 3, 3, 2, 1, 3, 2, 4, 2, 2, 3, 6, 3, 4, 2, 5, 3, 7, 4, 3, 4, 6, 5, 9, 2, 7, 4, 6, 5, 9, 5, 6, 6, 8, 3, 9, 7, 12, 7, 6, 6, 11, 5, 12, 6, 11, 7, 12, 6, 9, 10, 12, 7, 16, 5, 13, 8, 14, 9, 11, 9, 15, 11, 14
Offset: 1

Views

Author

Hugo Pfoertner and Rainer Rosenthal, Sep 29 2018

Keywords

Comments

Number of ways to write n as the sum of 4 positive integers a, b, c, d such that d < b and a*d^2 = b^2*c. - Robert Israel, Oct 04 2018

Examples

			a(8) = 1: 4/2 - 1/1 = (4 - 1)/(2 + 1) = 1;
a(11) = 1: 4/4 - 1/2 = (4 - 1)/(4 + 2) = 1/2;
a(13) = 1: 8/2 - 2/1 = (8 - 2)/(2 + 1) = 2;
a(14) = 2: 4/6 - 1/3 = (4 - 1)/(6 + 3) = 1/3, 9/3 - 1/1 = (9 - 1)/(3 + 1) = 2;
a(16) = 1: 8/4 - 2/2 = (8 - 2)/(4 + 2) = 1;
a(17) = 1: 4/8 - 1/4 = (4 - 1)/(8 + 4) = 1/4;
a(18) = 3: 9/3 - 4/2 = (9 - 4)/(3 + 2) = 1, 9/6 - 1/2 = (9 - 1)/(6 + 2) = 1, 12/2 - 3/1 = (12 - 3)/(2 + 1) = 3.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # for a(1)..a(N)
    V:= Vector(N):
    for d from 1 to N/2 do
      for b from d+1 to N-d do
        u:= d^2/igcd(b,d)^2;
        for c from u by u  do
          v:= c*b^2/d^2+b+c+d;
          if v > N then break fi;
          V[v]:= V[v]+1
    od od od:
    convert(V,list); # Robert Israel, Oct 04 2018
  • Mathematica
    M = 100; Clear[V]; V[_] = 0;
    For[d = 1, d <= M/2, d++,
      For[b = d+1, b <= M-d, b++,
        u = d^2/GCD[b, d]^2;
        For[c = u, True, c = c+u,
          v = c*b^2/d^2 + b + c + d;
          If[v > M, Break[]];
          V[v] = V[v]+1
    ]]];
    Array[V, M] (* Jean-François Alcover, Apr 02 2019, after Robert Israel *)
  • PARI
    m=84;v=vector(m);for(a=1,m,for(b=1,m,for(c=1,m,for(d=1,b-1,n=a+b+c+d;if(n<=m,if((a/b-c/d)==((a-c)/(b+d)),v[n]++))))));v

A320312 Number of ways to write n as the sum of 4 positive integers a, b, c, d such that b != d and a/b - c/d = (a - c)/(b - d).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 2, 1, 2, 1, 0, 5, 1, 3, 1, 3, 3, 2, 2, 3, 4, 4, 3, 5, 1, 4, 4, 8, 3, 6, 4, 4, 4, 6, 6, 7, 5, 8, 5, 6, 4, 11, 4, 11, 6, 7, 6, 13, 8, 7, 8, 13, 4, 11, 5, 12, 10, 11, 9, 11, 9, 10, 10, 12, 7, 18, 6, 15, 10, 15
Offset: 1

Views

Author

Hugo Pfoertner, Oct 10 2018

Keywords

Crossrefs

Programs

  • PARI
    m=80;v=vector(m);for(a=1,m,for(b=1,m,for(c=1,m,for(d=1,m,n=a+b+c+d;if(n<=m,if(b!=d&&a/b-c/d==(a-c)/(b-d),v[n]++))))));v

A320313 Number of ways to write n as the sum of 4 positive integers a, b, c, d such that d < b and a/b - c/d = (a - c)/(b - d).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 2, 0, 1, 1, 0, 1, 1, 2, 1, 1, 2, 0, 2, 1, 3, 1, 2, 2, 1, 1, 2, 3, 2, 2, 3, 2, 2, 1, 4, 1, 4, 2, 2, 3, 5, 3, 3, 2, 5, 1, 4, 2, 4, 5, 4, 3, 3, 4, 4, 3, 3, 3, 6, 2, 5, 4, 7, 3, 9, 3, 4, 3, 5
Offset: 1

Views

Author

Hugo Pfoertner, Oct 10 2018

Keywords

Crossrefs

Programs

  • PARI
    m=86;v=vector(m);for(a=1,m,for(b=1,m,for(c=1,m,for(d=1,b-1,n=a+b+c+d;if(n<=m,if(a/b-c/d==(a-c)/(b-d),v[n]++))))));v

A308733 Sum of the smallest parts of the partitions of n into 4 parts.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 6, 7, 11, 14, 21, 25, 34, 41, 55, 64, 81, 95, 119, 136, 165, 189, 227, 256, 301, 339, 396, 441, 507, 564, 645, 711, 804, 885, 996, 1089, 1215, 1326, 1474, 1600, 1766, 1914, 2106, 2272, 2486, 2678, 2922, 3136, 3406, 3650, 3955, 4225, 4560
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 22 2019

Keywords

Examples

			Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
                                                         1+1+1+9
                                                         1+1+2+8
                                                         1+1+3+7
                                                         1+1+4+6
                                             1+1+1+8     1+1+5+5
                                             1+1+2+7     1+2+2+7
                                 1+1+1+7     1+1+3+6     1+2+3+6
                                 1+1+2+6     1+1+4+5     1+2+4+5
                                 1+1+3+5     1+2+2+6     1+3+3+5
                     1+1+1+6     1+1+4+4     1+2+3+5     1+3+4+4
         1+1+1+5     1+1+2+5     1+2+2+5     1+2+4+4     2+2+2+6
         1+1+2+4     1+1+3+4     1+2+3+4     1+3+3+4     2+2+3+5
         1+1+3+3     1+2+2+4     1+3+3+3     2+2+2+5     2+2+4+4
         1+2+2+3     1+2+3+3     2+2+2+4     2+2+3+4     2+3+3+4
         2+2+2+2     2+2+2+3     2+2+3+3     2+3+3+3     3+3+3+3
--------------------------------------------------------------------------
  n  |      8           9          10          11          12        ...
--------------------------------------------------------------------------
a(n) |      6           7          11          14          21        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 07 2019
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[k, {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} k.
a(n) = A308775(n) - A308758(n) - A308759(n) - A308760(n).
Conjectures from Colin Barker, Jun 23 2019: (Start)
G.f.: x^4 / ((1 - x)^5*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) + a(n-4) - 3*a(n-5) - a(n-6) + a(n-8) + 3*a(n-9) - a(n-10) - a(n-12) - a(n-13) + a(n-14) for n>13.
(End)

A308758 Sum of the third largest parts of the partitions of n into 4 parts.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 4, 7, 9, 15, 20, 29, 38, 51, 64, 86, 104, 131, 160, 198, 233, 284, 332, 396, 459, 538, 616, 719, 814, 934, 1056, 1203, 1344, 1521, 1692, 1899, 2103, 2343, 2580, 2866, 3139, 3461, 3784, 4156, 4518, 4944, 5360, 5840, 6314, 6852, 7384, 7997
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 22 2019

Keywords

Examples

			Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
                                                         1+1+1+9
                                                         1+1+2+8
                                                         1+1+3+7
                                                         1+1+4+6
                                             1+1+1+8     1+1+5+5
                                             1+1+2+7     1+2+2+7
                                 1+1+1+7     1+1+3+6     1+2+3+6
                                 1+1+2+6     1+1+4+5     1+2+4+5
                                 1+1+3+5     1+2+2+6     1+3+3+5
                     1+1+1+6     1+1+4+4     1+2+3+5     1+3+4+4
         1+1+1+5     1+1+2+5     1+2+2+5     1+2+4+4     2+2+2+6
         1+1+2+4     1+1+3+4     1+2+3+4     1+3+3+4     2+2+3+5
         1+1+3+3     1+2+2+4     1+3+3+3     2+2+2+5     2+2+4+4
         1+2+2+3     1+2+3+3     2+2+2+4     2+2+3+4     2+3+3+4
         2+2+2+2     2+2+2+3     2+2+3+3     2+3+3+3     3+3+3+3
--------------------------------------------------------------------------
  n  |      8           9          10          11          12        ...
--------------------------------------------------------------------------
a(n) |      7           9          15          20          29        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 07 2019
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[j, {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]
    Table[Total[IntegerPartitions[n,{4}][[All,3]]],{n,0,60}] (* Harvey P. Dale, Dec 10 2021 *)

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} j.
a(n) = A308775(n) - A308733(n) - A308759(n) - A308760(n).
Conjectures from Colin Barker, Jun 23 2019: (Start)
G.f.: x^4*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = a(n-2) + 2*a(n-3) + 2*a(n-4) - 2*a(n-5) - 3*a(n-6) - 4*a(n-7) + 4*a(n-9) + 3*a(n-10) + 2*a(n-11) - 2*a(n-12) - 2*a(n-13) - a(n-14) + a(n-16) for n>15.
(End)

A308759 Sum of the second largest parts of the partitions of n into 4 parts.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 3, 5, 10, 13, 23, 30, 46, 59, 83, 103, 141, 170, 220, 265, 334, 392, 484, 563, 680, 784, 930, 1061, 1247, 1409, 1631, 1836, 2106, 2349, 2673, 2967, 3348, 3699, 4143, 4554, 5077, 5554, 6150, 6710, 7396, 8032, 8816, 9546, 10432, 11264, 12260
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 22 2019

Keywords

Examples

			Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
                                                         1+1+1+9
                                                         1+1+2+8
                                                         1+1+3+7
                                                         1+1+4+6
                                             1+1+1+8     1+1+5+5
                                             1+1+2+7     1+2+2+7
                                 1+1+1+7     1+1+3+6     1+2+3+6
                                 1+1+2+6     1+1+4+5     1+2+4+5
                                 1+1+3+5     1+2+2+6     1+3+3+5
                     1+1+1+6     1+1+4+4     1+2+3+5     1+3+4+4
         1+1+1+5     1+1+2+5     1+2+2+5     1+2+4+4     2+2+2+6
         1+1+2+4     1+1+3+4     1+2+3+4     1+3+3+4     2+2+3+5
         1+1+3+3     1+2+2+4     1+3+3+3     2+2+2+5     2+2+4+4
         1+2+2+3     1+2+3+3     2+2+2+4     2+2+3+4     2+3+3+4
         2+2+2+2     2+2+2+3     2+2+3+3     2+3+3+3     3+3+3+3
--------------------------------------------------------------------------
  n  |      8           9          10          11          12        ...
--------------------------------------------------------------------------
a(n) |     10          13          23          30          46        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 07 2019
		

Crossrefs

Programs

  • Mathematica
    Table[Total[IntegerPartitions[n,{4}][[All,2]]],{n,0,50}] (* Harvey P. Dale, Nov 08 2020 *)

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} i.
a(n) = A308775(n) - A308733(n) - A308758(n) - A308760(n).
Conjectures from Colin Barker, Jun 23 2019: (Start)
G.f.: x^4*(1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 2*x^5 + 2*x^6) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = a(n-2) + 2*a(n-3) + 2*a(n-4) - 2*a(n-5) - 3*a(n-6) - 4*a(n-7) + 4*a(n-9) + 3*a(n-10) + 2*a(n-11) - 2*a(n-12) - 2*a(n-13) - a(n-14) + a(n-16) for n>15.
(End)

A308760 Sum of the largest parts of the partitions of n into 4 parts.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 5, 9, 17, 25, 41, 57, 84, 112, 154, 197, 262, 325, 414, 506, 629, 751, 915, 1078, 1289, 1501, 1767, 2034, 2370, 2701, 3108, 3519, 4014, 4506, 5100, 5691, 6393, 7095, 7917, 8739, 9703, 10658, 11765, 12876, 14150, 15418, 16874, 18324, 19974
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 22 2019

Keywords

Examples

			Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
                                                         1+1+1+9
                                                         1+1+2+8
                                                         1+1+3+7
                                                         1+1+4+6
                                             1+1+1+8     1+1+5+5
                                             1+1+2+7     1+2+2+7
                                 1+1+1+7     1+1+3+6     1+2+3+6
                                 1+1+2+6     1+1+4+5     1+2+4+5
                                 1+1+3+5     1+2+2+6     1+3+3+5
                     1+1+1+6     1+1+4+4     1+2+3+5     1+3+4+4
         1+1+1+5     1+1+2+5     1+2+2+5     1+2+4+4     2+2+2+6
         1+1+2+4     1+1+3+4     1+2+3+4     1+3+3+4     2+2+3+5
         1+1+3+3     1+2+2+4     1+3+3+3     2+2+2+5     2+2+4+4
         1+2+2+3     1+2+3+3     2+2+2+4     2+2+3+4     2+3+3+4
         2+2+2+2     2+2+2+3     2+2+3+3     2+3+3+3     3+3+3+3
--------------------------------------------------------------------------
  n  |      8           9          10          11          12        ...
--------------------------------------------------------------------------
a(n) |     17          25          41          57          84        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 07 2019
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[n - i - j - k, {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} (n-i-j-k).
a(n) = A308775(n) - A308733(n) - A308758(n) - A308759(n).
Conjectures from Colin Barker, Jun 23 2019: (Start)
G.f.: x^4*(1 + 2*x + 4*x^2 + 5*x^3 + 6*x^4 + 4*x^5 + 3*x^6) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = a(n-2) + 2*a(n-3) + 2*a(n-4) - 2*a(n-5) - 3*a(n-6) - 4*a(n-7) + 4*a(n-9) + 3*a(n-10) + 2*a(n-11) - 2*a(n-12) - 2*a(n-13) - a(n-14) + a(n-16) for n>15.
(End)

A308775 Sum of all the parts in the partitions of n into 4 parts.

Original entry on oeis.org

0, 0, 0, 0, 4, 5, 12, 21, 40, 54, 90, 121, 180, 234, 322, 405, 544, 663, 846, 1026, 1280, 1512, 1848, 2162, 2592, 3000, 3536, 4050, 4732, 5365, 6180, 6975, 7968, 8910, 10098, 11235, 12636, 13986, 15618, 17199, 19120, 20951, 23142, 25284, 27808, 30240, 33120
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 23 2019

Keywords

Examples

			Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
                                                         1+1+1+9
                                                         1+1+2+8
                                                         1+1+3+7
                                                         1+1+4+6
                                             1+1+1+8     1+1+5+5
                                             1+1+2+7     1+2+2+7
                                 1+1+1+7     1+1+3+6     1+2+3+6
                                 1+1+2+6     1+1+4+5     1+2+4+5
                                 1+1+3+5     1+2+2+6     1+3+3+5
                     1+1+1+6     1+1+4+4     1+2+3+5     1+3+4+4
         1+1+1+5     1+1+2+5     1+2+2+5     1+2+4+4     2+2+2+6
         1+1+2+4     1+1+3+4     1+2+3+4     1+3+3+4     2+2+3+5
         1+1+3+3     1+2+2+4     1+3+3+3     2+2+2+5     2+2+4+4
         1+2+2+3     1+2+3+3     2+2+2+4     2+2+3+4     2+3+3+4
         2+2+2+2     2+2+2+3     2+2+3+3     2+3+3+3     3+3+3+3
--------------------------------------------------------------------------
  n  |      8           9          10          11          12        ...
--------------------------------------------------------------------------
a(n) |     40          54          90         121         180        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 07 2019
		

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[Sum[Sum[1, {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]

Formula

a(n) = n * A026810(n).
a(n) = A308733(n) + A308758(n) + A308759(n) + A308760(n).
Conjectures from Colin Barker, Jun 24 2019: (Start)
G.f.: x^4*(4 + 5*x + 8*x^2 + 8*x^3 + 10*x^4 + 7*x^5 + 6*x^6) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = a(n-2) + 2*a(n-3) + 2*a(n-4) - 2*a(n-5) - 3*a(n-6) - 4*a(n-7) + 4*a(n-9) + 3*a(n-10) + 2*a(n-11) - 2*a(n-12) - 2*a(n-13) - a(n-14) + a(n-16) for n>15.
(End)

A320311 Number of ways to write n as the sum of 4 positive integers a, b, c, d such that 1 - a/c = (1 - b/d)^2.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 0, 5, 0, 6, 1, 6, 0, 8, 2, 9, 2, 10, 0, 15, 1, 14, 1, 15, 3, 15, 2, 17, 4, 19, 3, 21, 1, 21, 4, 26, 3, 25, 4, 24, 4, 27, 6, 29, 5, 31, 5, 30, 4, 36, 4, 37, 6, 34, 6, 41, 8, 36, 8, 43, 4, 42, 5, 44, 10, 44, 9, 45, 9, 45, 10, 48
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    m=74;v=vector(m);for(a=1,m,for(b=1,m,for(c=1,m,for(d=1,m,n=a+b+c+d;if(n<=m,if(1-a/c==(1-b/d)^2,v[n]++))))));v

A008641 Number of partitions of n into at most 12 parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 100, 133, 172, 224, 285, 366, 460, 582, 725, 905, 1116, 1380, 1686, 2063, 2503, 3036, 3655, 4401, 5262, 6290, 7476, 8877, 10489, 12384, 14552, 17084, 19978, 23334, 27156, 31570, 36578, 42333, 48849, 56297
Offset: 0

Views

Author

Keywords

Comments

With a different offset, number of partitions of n in which the greatest part is 12.
Also number of partitions of n into parts <= 12: a(n)=A026820(n,12). [Reinhard Zumkeller, Jan 21 2010]

References

  • A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.

Crossrefs

a(n) = A008284(n+12, 12), n >= 0.

Programs

  • Maple
    1/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/(1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)/(1-x^9)/(1-x^10)/(1-x^11)/(1-x^12)
    with(combstruct):ZL13:=[S,{S=Set(Cycle(Z,card<13))}, unlabeled]:seq(count(ZL13,size=n),n=0..46); # Zerinvary Lajos, Sep 24 2007
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=12)},unlabelled]: seq(combstruct[count](B, size=n), n=0..46); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 12} ], {x, 0, 60} ], x ]
    Table[ Length[ Select[ Partitions[n], First[ # ] == 12 & ]], {n, 1, 60} ]

Formula

G.f.: 1/Product_{k=1..12}(1-x^k).
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) - a(n-13) + 2*a(n-15) + a(n-16) + a(n-17) - a(n-20) - a(n-21) - 2*a(n-22) - a(n-23) - a(n-24) - 2*a(n-26) + a(n-28) + 2*a(n-29) + 2*a(n-30) + 2*a(n-31) + 2*a(n-32) + a(n-33) + a(n-34) - a(n-36) - 2*a(n-37) - a(n-38) - 4*a(n-39) - a(n-40) - 2*a(n-41) - a(n-42) + a(n-44) + a(n-45) + 2*a(n-46) + 2a(n-47) + 2*a(n-48) + 2*a(n-49) + a(n-50) - 2*a(n-52) - a(n-54) - a(n-55) - 2*a(n-56) - a(n-57) - a(n-58) + a(n-61) + a(n-62) + 2*a(n-63) - a(n-65) + a(n-66) - a(n-71) - a(n-73) + a(n-76) + a(n-77) - a(n-78). - David Neil McGrath, Jul 28 2015

Extensions

More terms from Robert G. Wilson v, Dec 11 2000
Previous Showing 21-30 of 41 results. Next