cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A008641 Number of partitions of n into at most 12 parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 100, 133, 172, 224, 285, 366, 460, 582, 725, 905, 1116, 1380, 1686, 2063, 2503, 3036, 3655, 4401, 5262, 6290, 7476, 8877, 10489, 12384, 14552, 17084, 19978, 23334, 27156, 31570, 36578, 42333, 48849, 56297
Offset: 0

Views

Author

Keywords

Comments

With a different offset, number of partitions of n in which the greatest part is 12.
Also number of partitions of n into parts <= 12: a(n)=A026820(n,12). [Reinhard Zumkeller, Jan 21 2010]

References

  • A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.

Crossrefs

a(n) = A008284(n+12, 12), n >= 0.

Programs

  • Maple
    1/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/(1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)/(1-x^9)/(1-x^10)/(1-x^11)/(1-x^12)
    with(combstruct):ZL13:=[S,{S=Set(Cycle(Z,card<13))}, unlabeled]:seq(count(ZL13,size=n),n=0..46); # Zerinvary Lajos, Sep 24 2007
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=12)},unlabelled]: seq(combstruct[count](B, size=n), n=0..46); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 12} ], {x, 0, 60} ], x ]
    Table[ Length[ Select[ Partitions[n], First[ # ] == 12 & ]], {n, 1, 60} ]

Formula

G.f.: 1/Product_{k=1..12}(1-x^k).
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) - a(n-13) + 2*a(n-15) + a(n-16) + a(n-17) - a(n-20) - a(n-21) - 2*a(n-22) - a(n-23) - a(n-24) - 2*a(n-26) + a(n-28) + 2*a(n-29) + 2*a(n-30) + 2*a(n-31) + 2*a(n-32) + a(n-33) + a(n-34) - a(n-36) - 2*a(n-37) - a(n-38) - 4*a(n-39) - a(n-40) - 2*a(n-41) - a(n-42) + a(n-44) + a(n-45) + 2*a(n-46) + 2a(n-47) + 2*a(n-48) + 2*a(n-49) + a(n-50) - 2*a(n-52) - a(n-54) - a(n-55) - 2*a(n-56) - a(n-57) - a(n-58) + a(n-61) + a(n-62) + 2*a(n-63) - a(n-65) + a(n-66) - a(n-71) - a(n-73) + a(n-76) + a(n-77) - a(n-78). - David Neil McGrath, Jul 28 2015

Extensions

More terms from Robert G. Wilson v, Dec 11 2000

A008766 Expansion of (1+x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 29, 36, 45, 54, 65, 77, 91, 106, 123, 141, 162, 184, 208, 234, 263, 293, 326, 361, 399, 439, 482, 527, 576, 627, 681, 738, 799, 862, 929, 999, 1073, 1150, 1231, 1315, 1404, 1496, 1592, 1692, 1797, 1905, 2018, 2135, 2257, 2383, 2514, 2649, 2790, 2935
Offset: 0

Views

Author

Keywords

Comments

From Washington Bomfim, Jan 14 2021: (Start)
Let \n,m\ be the number of partitions of n into m non-distinct parts.
For n >= 1, \n,5\ = round((2*n^3-15*n^2+60*n-110*[n mod 2 = 0]-65*[n mod 2])/144).
For n >= 10, \n,5\ = A026811(n) - A026811(n-10).
(End)

Crossrefs

Programs

  • GAP
    a:=[1,1,2,3,5,7,10,13,18];; for n in [10..60] do a[n]:=2*a[n-1]-a[n-2]+a[n-3]-a[n-4]-a[n-5]+a[n-6]-a[n-7]+2*a[n-8]-a[n-9]; od; a; # G. C. Greubel, Sep 10 2019
    
  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, Sep 10 2019
    
  • Maple
    seq(coeff(series((1+x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Sep 10 2019
  • Mathematica
    CoefficientList[Series[(1+x^5)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4),{x,0,60}],x] (* or *) LinearRecurrence[{2,-1,1,-1,-1,1,-1,2,-1}, {1,1,2,3,5,7,10, 13,18}, 60] (* Harvey P. Dale, Jul 24 2016 *)
  • PARI
    Vec((1+x^5)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4) +O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    seq(x) = { a = vector(x+1); my(N = 5);
    for(n=0,x, a[n+1]=round((2*N^3-15*N^2+60*N-110*!(N%2)-65*(N%2))/144); N++);a};
    seq(60) \\ Washington Bomfim, Jan 14 2021
  • Sage
    def A008766_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))).list()
    A008766_list(60) # G. C. Greubel, Sep 10 2019
    

Formula

a(n) = round((2*N^3 - 15*N^2 + 60*N - 110*[N mod 2=0] - 65*[N mod 2])/144), where N = n+5. - Washington Bomfim, Jan 14 2021

Extensions

Terms a(45) onward added by G. C. Greubel, Sep 10 2019

A309427 Number of prime parts in the partitions of n into 5 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 5, 11, 17, 24, 32, 46, 57, 77, 92, 118, 141, 175, 204, 249, 287, 342, 390, 459, 517, 600, 672, 771, 859, 975, 1078, 1214, 1336, 1495, 1636, 1818, 1982, 2190, 2378, 2615, 2830, 3097, 3340, 3641, 3915, 4250, 4557, 4930, 5273, 5687, 6068
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 01 2019

Keywords

Examples

			Figure 1: The partitions of n into 5 parts for n = 10, 11, ..
                                                       1+1+1+1+10
                                                        1+1+1+2+9
                                                        1+1+1+3+8
                                                        1+1+1+4+7
                                                        1+1+1+5+6
                                            1+1+1+1+9   1+1+2+2+8
                                            1+1+1+2+8   1+1+2+3+7
                                            1+1+1+3+7   1+1+2+4+6
                                            1+1+1+4+6   1+1+2+5+5
                                            1+1+1+5+5   1+1+3+3+6
                                1+1+1+1+8   1+1+2+2+7   1+1+3+4+5
                                1+1+1+2+7   1+1+2+3+6   1+1+4+4+4
                                1+1+1+3+6   1+1+2+4+5   1+2+2+2+7
                    1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6
                    1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5
                    1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5
        1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4
        1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4
        1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6
        1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5
        1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4
        1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4
        2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3
--------------------------------------------------------------------------
  n  |     10          11          12          13          14        ...
--------------------------------------------------------------------------
a(n) |     17          24          32          46          57        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 08 2019
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) + (PrimePi[j] - PrimePi[j - 1]) + (PrimePi[k] - PrimePi[k - 1]) + (PrimePi[l] - PrimePi[l - 1]) + (PrimePi[n - i - j - k - l] - PrimePi[n - i - j - k - l - 1]), {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}]

Formula

a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-1)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} (A010051(i) + A010051(j) + A010051(k) + A010051(l) + A010051(n-i-j-k-l)).

A026925 Number of partitions of n into an odd number of parts, the greatest being 5; also, a(n+9) = number of partitions of n+4 into an even number of parts, each <=5.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 1, 3, 3, 6, 6, 10, 10, 16, 17, 25, 27, 37, 40, 53, 57, 73, 79, 99, 107, 131, 142, 171, 184, 218, 235, 275, 296, 343, 368, 422, 452, 514, 550, 621, 663, 743, 792, 883, 939, 1041, 1106, 1220, 1294, 1421, 1505, 1646, 1740
Offset: 1

Views

Author

Keywords

Crossrefs

5th column of A262920.

Formula

a(n) + A026929(n) =A026811(n). - R. J. Mathar, Aug 22 2019

A382864 Triangle read by rows: T(n,k) = T(n-k,k-1) + T(n-k,k) with T(0,0) = 1 for 0 <= k <= A003056(n).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 3, 1, 0, 1, 3, 2, 0, 1, 4, 3, 0, 1, 4, 4, 1, 0, 1, 5, 5, 1, 0, 1, 5, 7, 2, 0, 1, 6, 8, 3, 0, 1, 6, 10, 5, 0, 1, 7, 12, 6, 1, 0, 1, 7, 14, 9, 1, 0, 1, 8, 16, 11, 2, 0, 1, 8, 19, 15, 3, 0, 1, 9, 21, 18, 5, 0, 1, 9, 24, 23, 7
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2025

Keywords

Examples

			First few rows are:
  1;
  0, 1;
  0, 1;
  0, 1, 1;
  0, 1, 1;
  0, 1, 2;
  0, 1, 2,  1;
  0, 1, 3,  1;
  0, 1, 3,  2;
  0, 1, 4,  3;
  0, 1, 4,  4, 1;
  0, 1, 5,  5, 1;
  0, 1, 5,  7, 2;
  0, 1, 6,  8, 3;
  0, 1, 6, 10, 5;
  0, 1, 7, 12, 6, 1;
  ...
		

Crossrefs

Row sums give A000009.
Columns 0..10 give A000007, A000012, A004526(n-1), A069905(n-3), A026810(n-6), A026811(n-10), A026812(n-15), A026813(n-21), A026814(n-28), A026815(n-36), A026816(n-45).

Formula

G.f. of column k: x^(k*(k+1)/2) / Product_{j=1..k} (1-x^j).
T(n,k) = |A292047(n,k)| = |A292049(n,k)|.
Previous Showing 21-25 of 25 results.