cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A341907 T(n, k) is the result of replacing 2^e with k^e in the binary expansion of n; square array T(n, k) read by antidiagonals upwards, n, k >= 0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 2, 2, 1, 0, 1, 1, 3, 3, 1, 0, 0, 2, 4, 4, 4, 1, 0, 1, 2, 5, 9, 5, 5, 1, 0, 0, 3, 6, 10, 16, 6, 6, 1, 0, 1, 1, 7, 12, 17, 25, 7, 7, 1, 0, 0, 2, 8, 13, 20, 26, 36, 8, 8, 1, 0, 1, 2, 9, 27, 21, 30, 37, 49, 9, 9, 1, 0, 0, 3, 10, 28, 64, 31, 42, 50, 64, 10, 10, 1, 0
Offset: 0

Views

Author

Rémy Sigrist, Jun 04 2021

Keywords

Comments

For any n >= 0, the n-th row, k -> T(n, k), corresponds to a polynomial in k with coefficients in {0, 1}.
For any k > 1, the k-th column, n -> T(n, k), corresponds to sums of distinct powers of k.

Examples

			Array T(n, k) begins:
  n\k|  0  1   2   3   4    5    6    7    8    9    10    11    12
  ---+-------------------------------------------------------------
    0|  0  0   0   0   0    0    0    0    0    0     0     0     0
    1|  1  1   1   1   1    1    1    1    1    1     1     1     1
    2|  0  1   2   3   4    5    6    7    8    9    10    11    12
    3|  1  2   3   4   5    6    7    8    9   10    11    12    13
    4|  0  1   4   9  16   25   36   49   64   81   100   121   144
    5|  1  2   5  10  17   26   37   50   65   82   101   122   145
    6|  0  2   6  12  20   30   42   56   72   90   110   132   156
    7|  1  3   7  13  21   31   43   57   73   91   111   133   157
    8|  0  1   8  27  64  125  216  343  512  729  1000  1331  1728
    9|  1  2   9  28  65  126  217  344  513  730  1001  1332  1729
   10|  0  2  10  30  68  130  222  350  520  738  1010  1342  1740
   11|  1  3  11  31  69  131  223  351  521  739  1011  1343  1741
   12|  0  2  12  36  80  150  252  392  576  810  1100  1452  1872
		

Crossrefs

Programs

  • PARI
    T(n,k) = { my (v=0, e); while (n, n-=2^e=valuation(n,2); v+=k^e); v }

Formula

T(n, n) = A104258(n).
T(n, 0) = A000035(n).
T(n, 1) = A000120(n).
T(n, 2) = n.
T(n, 3) = A005836(n).
T(n, 4) = A000695(n).
T(n, 5) = A033042(n).
T(n, 6) = A033043(n).
T(n, 7) = A033044(n).
T(n, 8) = A033045(n).
T(n, 9) = A033046(n).
T(n, 10) = A007088(n).
T(n, 11) = A033047(n).
T(n, 12) = A033048(n).
T(n, 13) = A033049(n).
T(0, k) = 0.
T(1, k) = 1.
T(2, k) = k.
T(3, k) = k + 1.
T(4, k) = k^2.
T(5, k) = k^2 + 1 = A002522(k).
T(6, k) = k^2 + k = A002378(k).
T(7, k) = k^2 + k + 1 = A002061(k).
T(8, k) = k^3.
T(9, k) = k^3 + 1 = A001093(k).
T(10, k) = k^3 + k = A034262(k).
T(11, k) = k^3 + k + 1 = A071568(k).
T(12, k) = k^3 + k^2 = A011379(k).
T(13, k) = k^3 + k^2 + 1 = A098547(k).
T(14, k) = k^3 + k^2 + k = A027444(k).
T(15, k) = k^3 + k^2 + k + 1 = A053698(k).
T(16, k) = k^4 = A000583(k).
T(17, k) = k^4 + 1 = A002523(k).
T(m + n, k) = T(m, k) + T(n, k) when m AND n = 0 (where AND denotes the bitwise AND operator).

A348461 Size of largest bipartite biregular Moore graph of diameter 4 and degrees n and n.

Original entry on oeis.org

8, 30, 80, 170, 312
Offset: 2

Views

Author

N. J. A. Sloane, Oct 31 2021

Keywords

Comments

a(7) >= 516, a(8) = 800, a(9) = 1170, a(10) = 1640.

Crossrefs

Formula

Empirical observation: For the terms a(2)-a(6) and a(8)-a(10) a(n) = 2*(A027444(n-1) + 1). It is unknown whether this is also valid for n = 7 and n > 10. - Hugo Pfoertner, Oct 31 2021
Is this the same as 2*A053698(n-1)? If not, where is the first place these sequences differ? - Omar E. Pol, Oct 31 2021
a(n) <= 2*A053698(n-1) (the Moore bound). - Pontus von Brömssen, Oct 31 2021

A318765 a(n) = (n + 2)*(n^2 + n - 1).

Original entry on oeis.org

-2, 3, 20, 55, 114, 203, 328, 495, 710, 979, 1308, 1703, 2170, 2715, 3344, 4063, 4878, 5795, 6820, 7959, 9218, 10603, 12120, 13775, 15574, 17523, 19628, 21895, 24330, 26939, 29728, 32703, 35870, 39235, 42804, 46583, 50578, 54795, 59240, 63919, 68838, 74003, 79420, 85095
Offset: 0

Views

Author

Bruno Berselli, Sep 04 2018

Keywords

Comments

First differences are in A004538.
a(n) is divisible by 11 for n = 3, 7, 9, 14, 18, 20, 25, 29, 31, 36, 40, ... with formula (1/3)*(11*m + (1 + (m mod 3))*(-1)^((m-1) mod 3) + 8), m >= 0.

Crossrefs

Cf. A004538.
Subsequence of A047216.
Similar sequences (see Table in Links section): A011379, A027444, A033445, A034262, A045991, A069778.

Programs

  • GAP
    List([0..50], n -> (n+2)*(n^2+n-1));
    
  • Julia
    [(n+2)*(n^2+n-1) for n in 0:50] |> println
  • Magma
    [(n+2)*(n^2+n-1): n in [0..50]];
    
  • Maple
    seq((n+2)*(n^2+n-1),n=0..43); # Paolo P. Lava, Sep 04 2018
  • Mathematica
    Table[(n + 2) (n^2 + n - 1), {n, 0, 50}]
  • Maxima
    makelist((n+2)*(n^2+n-1), n, 0, 50);
    
  • PARI
    vector(50, n, n--; (n+2)*(n^2+n-1))
    
  • Python
    [(n+2)*(n**2+n-1) for n in range(50)]
    
  • Sage
    [(n+2)*(n^2+n-1) for n in (0..50)]
    

Formula

O.g.f.: (-2 + 11*x - 4*x^2 + x^3)/(1 - x)^4.
E.g.f.: (-2 + 5*x + 6*x^2 + x^3)*exp(x).
a(n) = -A033445(-n-1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n >= 5. - Wesley Ivan Hurt, Dec 18 2020

A119576 (n+n^2+n^3)*(binomial(2*n,n)).

Original entry on oeis.org

0, 6, 84, 780, 5880, 39060, 238392, 1369368, 7516080, 39819780, 205079160, 1032047016, 5094629904, 24743027400, 118504436400, 560749834800, 2625519143520, 12179090862180, 56029885342200, 255864364648200
Offset: 0

Views

Author

Zerinvary Lajos, May 31 2006

Keywords

Crossrefs

Programs

  • Maple
    [seq ((n+n^2+n^3)*(binomial(2*n,n)),n=0..25)];

A119577 (n+n^2+n^3)*(binomial(2*n,n))/2.

Original entry on oeis.org

0, 3, 42, 390, 2940, 19530, 119196, 684684, 3758040, 19909890, 102539580, 516023508, 2547314952, 12371513700, 59252218200, 280374917400, 1312759571760, 6089545431090, 28014942671100, 127932182324100
Offset: 0

Views

Author

Zerinvary Lajos, May 31 2006

Keywords

Crossrefs

Programs

  • Maple
    [seq ((n+n^2+n^3)*(binomial(2*n,n))/2,n=0..29)];
  • Mathematica
    Table[(n+n^2+n^3) Binomial[2n,n]/2,{n,0,20}] (* Harvey P. Dale, May 26 2020 *)
Previous Showing 21-25 of 25 results.