cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A276261 Centered 21-gonal primes.

Original entry on oeis.org

127, 211, 757, 2521, 2857, 6301, 8527, 16381, 19867, 23689, 24697, 27847, 32341, 37171, 38431, 42337, 66361, 68041, 82237, 89839, 97777, 103951, 114661, 140071, 152461, 162751, 170689, 192781, 204331, 216217, 231547, 240997, 284131, 308827, 353557, 357421, 385057, 389089
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 26 2016

Keywords

Comments

Primes of the form (21*k^2 + 21*k + 2)/2.
Numbers k such that (21*k^2 + 21*k + 2)/2 is prime: 3, 4, 8, 15, 16, 24, 28, 39, 43, 47, 48, 51, 55, 059, 60, 63, 79, 80, 88, 92, 96, 99, ...

Crossrefs

Cf. similar sequences of the centered k-gonal primes: A125602 (k = 3), A027862 (k = 4), A145838 (k = 5), A002407 (k = 6), A144974 (k = 7), A090562 (k = 10), A262344 (k = 11), A262493 (k = 13), A264821 (k = 14), A264822 (k = 15), A264823 (k = 16), A264824 (k = 17), A264825 (k = 18), A264844 (k = 19), A264845 (k = 20), A201715 (k = 24).

Programs

  • Mathematica
    Intersection[Table[(21 k^2 + 21 k + 2)/2, {k, 0, 1000}], Prime[Range[33000]]]
  • PARI
    lista(nn) = for(n=1, nn, if(isprime(p=(21*n^2 + 21*n + 2)/2), print1(p, ", "))); \\ Altug Alkan, Aug 26 2016

A218207 Number of n-digit primes of the form (k-1)^2 + k^2.

Original entry on oeis.org

1, 3, 6, 16, 42, 107, 286, 764, 2124, 5917, 17250, 49818, 145429
Offset: 1

Views

Author

Martin Renner, Oct 23 2012

Keywords

Crossrefs

Programs

  • Mathematica
    n = 0; Table[cnt = 0; While[n++; p = 2*n^2 - 2*n + 1; p < 10^e, If[PrimeQ[p], cnt++]]; n--; cnt, {e, 10}] (* T. D. Noe, Oct 23 2012 *)

Formula

a(n) = A218208(n) - A218208(n-1)

A218208 Number of primes up to 10^n that are of the form (k-1)^2 + k^2.

Original entry on oeis.org

1, 4, 10, 26, 68, 175, 461, 1225, 3349, 9266, 26516, 76334, 221763
Offset: 1

Views

Author

Martin Renner, Oct 23 2012

Keywords

Crossrefs

Programs

  • Mathematica
    n = 0; cnt = 0; Table[While[n++; p = 2*n^2 - 2*n + 1; p < 10^e, If[PrimeQ[p], cnt++]]; n--; cnt, {e, 10}] (* T. D. Noe, Oct 23 2012 *)

Formula

a(n) = sum(A218207(k), k=1..n)

A376992 a(n) is the least n-digit prime of the form j^2 + (j+1)^2.

Original entry on oeis.org

5, 13, 113, 1013, 10513, 100801, 1006781, 10030721, 100040513, 1001057513, 10000515313, 100016728501, 1000078402181, 10000013617661, 100000472012281, 1000000064846161, 10000005481873013, 100000002459693601, 1000000116852093013, 10000000062611784481, 100000001234170737761
Offset: 1

Views

Author

Stefano Spezia, Oct 11 2024

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local j,x;
         for j from ceil((sqrt(2*10^(n-1)-1)-1)/2) do
           x:= j^2 + (j+1)^2;
           if isprime(x) then return x fi
         od
    end proc:
    map(f, [$1..40]); # Robert Israel, Oct 13 2024
  • Mathematica
    a[n_]:=Module[{k=1}, While[!PrimeQ[m=2k^2+2k+1]||IntegerLength[m]
    				
  • Python
    from math import isqrt
    from itertools import count
    from sympy import prime
    def A376992(n):
        for k in count(isqrt(((a:=10**(n-1))<<1)-1>>2)):
            m = 2*k*(k+1)+1
            if m >= a and isprime(m):
                return m # Chai Wah Wu, Oct 13 2024

Formula

Conjecture: a(n+1)/a(n) ~ 10.

A076727 Primes of the form x^2 + (x+3)^2.

Original entry on oeis.org

17, 29, 89, 149, 269, 317, 617, 929, 1109, 1409, 2969, 3449, 3617, 4517, 5309, 6389, 7817, 8069, 8849, 12329, 14969, 17117, 17489, 21017, 23117, 23549, 27617, 30509, 32009, 33029, 34589, 35117, 41189, 42929, 43517, 47129, 48989, 52817, 60209
Offset: 1

Views

Author

Cino Hilliard, Oct 28 2002

Keywords

Comments

Each prime of the form 4k+1 has a unique representation as x^2+y^2; these primes have y-x=3.

Crossrefs

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 2*n^2+6*n+9]; // Vincenzo Librandi, Jul 15 2012
  • Mathematica
    Select[Table[2*n^2+6*n+9,{n,0,300}],PrimeQ] (* Vincenzo Librandi, Jul 15 2012 *)

Extensions

Edited by Don Reble, May 03 2006

A154428 Primes of the form 50n^2 + 10n + 1.

Original entry on oeis.org

61, 1301, 1861, 2521, 5101, 7321, 8581, 9941, 14621, 16381, 20201, 24421, 26681, 34061, 36721, 51521, 68821, 76441, 97241, 101701, 106261, 110921, 135721, 163021, 168781, 199081, 205441, 218461, 252761, 282001, 304981, 312841, 337021, 353641
Offset: 1

Views

Author

Vincenzo Librandi, Jan 09 2009

Keywords

Comments

Subsequence of A027862 associated with the values of A027861 that are multiples of 5. [R. J. Mathar, Jan 12 2009]

Crossrefs

Programs

  • GAP
    Filtered(List([1..100],n->50*n^2+10*n+1),IsPrime); # Muniru A Asiru, Apr 25 2019
  • Magma
    [a: n in [0..100] | IsPrime(a) where a is 50*n^2 + 10*n + 1]; // Vincenzo Librandi, Jul 23 2012
    
  • Maple
    select(isprime,[50*n^2+10*n+1$n=1..100])[]; # Muniru A Asiru, Apr 25 2019
  • Mathematica
    Select[Table[50n^2+10n+1,{n,0,200}],PrimeQ] (* Vincenzo Librandi, Jul 23 2012 *)
  • PARI
    for (n=0, 100, if (isprime (k=50*n^2+10*n+1), print1 (k, ", "))); \\ Vincenzo Librandi, Jul 23 2012
    

Extensions

Replaced 13721 by 135721 - R. J. Mathar, Jan 12 2009

A166080 Nonprimes of the form (k^2+1)/2.

Original entry on oeis.org

1, 25, 85, 145, 221, 265, 365, 481, 545, 685, 841, 925, 1105, 1405, 1513, 1625, 1985, 2245, 2665, 2813, 2965, 3281, 3445, 3785, 3961, 4141, 4325, 4705, 4901, 5305, 5513, 5725, 5941, 6161, 6385, 6613, 6845, 7081, 7565, 7813, 8065, 8321, 8845, 9113, 9385
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 06 2009

Keywords

Comments

Or, 1 together with composite numbers of the form i^2+(i+1)^2. See A012132. - N. J. A. Sloane, Feb 29 2020

Examples

			a(1)=(1^2+1)/2=1; a(2)=(7^2+1)/2=25.
		

Crossrefs

Programs

  • Mathematica
    Select[(Range[0,150]^2+1)/2,IntegerQ[#]&&!PrimeQ[#]&] (* Harvey P. Dale, Aug 09 2025 *)

Formula

a(n) = 2n^2 + O(n^2/log n). - Charles R Greathouse IV, Mar 21 2014

Extensions

Replaced 6261 by 6161 - R. J. Mathar, Oct 07 2009

A208292 Primes of the form (n^2+1)/26.

Original entry on oeis.org

17, 37, 457, 601, 701, 877, 997, 2017, 3037, 3257, 4957, 5237, 5701, 10601, 11257, 11677, 14737, 15217, 16001, 17317, 17837, 21577, 22157, 24677, 29717, 34057, 39157, 39937, 41201, 50777, 52201, 53101, 75277, 78101, 79201, 89917, 91097, 93001, 94201, 96137
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2012

Keywords

Comments

Equivalently, primes of the form (K^2 + (K+1)^2)/13. The
connection to the primes of the form (m^2+1)/26 is given by m=2*K+1 (m is necessarily odd).
The corresponding m=m(n) values are given in A208293(n).
Equivalently, primes of the form (4*T(K)+1)/13, with the
corresponding triangular numbers T(K):=A000217(K), for
K=K(n)=(m(n)-1)/2, given in A208294(n).
For n>=2 the smallest positive representative of the class of
nontrivial solutions of the congruence x^2==1 (Modd a(n)) is
x=m(n). The trivial solution is the class with representative x=1, which also includes -1. For the prime
a(1)=17 the nontrivial solution is 13 (see A002733(2)). Unique nontrivial smallest positive representatives exist for the solutions for any prime of the form 4*k+1, given in A002144. Here the subset with k=k(n)=(a(n)-1)/4 appears, namely 4,9,114,150,175,219,.... For Modd n see a comment on A203571.
These primes with corresponding m values are such that floor(m(n)^2/p(n)) = 5^2, n>=1.

Examples

			a(3)=457, m(3)=A208293(3)=109. T(K(3))=A000217((109-1)/2)=
  A000217(54)=A208294(3)=1485.
		

Crossrefs

Cf. A207337, A207339 (case floor(m^2/p)=3^2); A129307, A027862, A002731 (case floor(m^2/p)=1^2).

Programs

  • Mathematica
    Select[(Range[2000]^2 + 1)/26, PrimeQ] (* T. D. Noe, Feb 28 2012 *)

Formula

a(n) is the n-th member of the increasingly ordered list of primes of the form (m^2+1)/10, where m=m(n) is necessarily an odd integer, the positive one is A208293(n).

A208293 Numbers n such that (n^2+1)/26 is prime.

Original entry on oeis.org

21, 31, 109, 125, 135, 151, 161, 229, 281, 291, 359, 369, 385, 525, 541, 551, 619, 629, 645, 671, 681, 749, 759, 801, 879, 941, 1009, 1019, 1035, 1149, 1165, 1175, 1399, 1425, 1435, 1529, 1539, 1555, 1565, 1581, 1669, 1685, 1695, 1799, 1851, 1919, 1945, 1971
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2012

Keywords

Comments

The corresponding primes (n^2+1)/26 are given in A208292(n).
a(n) is the smallest positive representative of the class of
nontrivial solutions of the congruence x^2==1 (Modd A208292(n)), if n>=2. The trivial solution is the class with representative x=1, which also includes -1. For Modd n see a comment on A203571. For n=1: a(1) = 21 == 13 (Modd 17), and 13 is the smallest positive solution >1.
The unique class of nontrivial solutions of the congruence x^2==1 (Modd p), with p an odd prime, exists for any p of the form 4*k+1, given in A002144. Here a subset of these primes is covered, the ones for k=k(n)=(a(n)^2-25)/(4*26). These values are 4, 9, 114, 150, 175, 219, ...

Examples

			a(3)=109 because (109^2+1)/26 = 457 is prime.
  109 = sqrt(26*457-1) = sqrt(8*1485+1).
		

Crossrefs

Programs

Formula

a(n) = sqrt(26*A208292(n)-1) = sqrt(8*A208294(n)+1), n>=1.

A208294 Triangular numbers T from A000217 such that (4*T+1)/13 is prime.

Original entry on oeis.org

55, 120, 1485, 1953, 2278, 2850, 3240, 6555, 9870, 10585, 16110, 17020, 18528, 34453, 36585, 37950, 47895, 49455, 52003, 56280, 57970, 70125, 72010, 80200, 96580, 110685, 127260, 129795, 133903, 165025, 169653, 172578, 244650
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2012

Keywords

Comments

The corresponding primes are gven in A208292, where equivalent formulations are found.
The indices of these triangular numbers are given by (A208293(n)-1)/2.

Examples

			a(2) = 120. m(2)= 31: 120 = T((31-1)/2) = T(15)=A000217(15). (4*120+1)/13 = 37 = A208292(2).
		

Crossrefs

Programs

  • Mathematica
    tri = # (# + 1)/2 & /@ Range@ 1000; Select[ tri, PrimeQ[(4 # + 1)/13] &] (* Robert G. Wilson v, Feb 28 2012 *)

Formula

a(n) = T(K(n)):= A000217(K(n)) with K(n)=(A208293(n)-1)/2.
Previous Showing 11-20 of 45 results. Next