A100321
The trinomial transform (A027907) gives powers of 2, while the trinomial transform of this sequence shift one place left gives powers of 3.
Original entry on oeis.org
1, 1, 0, 2, -3, 8, -16, 35, -72, 150, -307, 628, -1276, 2587, -5228, 10546, -21235, 42704, -85784, 172179, -345344, 692286, -1387155, 2778492, -5563748, 11138443, -22294596, 44617850, -89282067, 178639160, -357399712, 714995843, -1430309496, 2861133222, -5723098483, 11447543236
Offset: 0
2^3 = 1*(1) + 3*(1) + 6*(0) + 7*(2) + 6*(-3) + 3*(8) + 1*(-16).
3^3 = 1*(1) + 3*(0) + 6*(2) + 7*(-3) + 6*(8) + 3*(-16) + 1*(35).
-
[((-1)^n*(3*Fibonacci(n-1) -2^n) +1)/3: n in [0..40]]; // G. C. Greubel, Feb 01 2023
-
LinearRecurrence[{-2,2,3,-2}, {1,1,0,2}, 41] (* G. C. Greubel, Feb 01 2023 *)
-
a(n)=polcoeff((1+3*x-3*x^3)/(1+2*x-2*x^2-3*x^3+2*x^4+x*O(x^n)),n)
-
def A100321(n): return ((-1)^n*(3*fibonacci(n-1) -2^n) +1)/3
[A100321(n) for n in range(41)] # G. C. Greubel, Feb 01 2023
A104495
Matrix inverse of triangle A099602, read by rows, where row n of A099602 equals the inverse binomial transform of column n of the triangle of trinomial coefficients (A027907).
Original entry on oeis.org
1, -1, 1, 1, -2, 1, -1, 3, -4, 1, 1, -4, 12, -5, 1, -1, 5, -34, 17, -7, 1, 1, -6, 98, -51, 32, -8, 1, -1, 7, -294, 149, -124, 40, -10, 1, 1, -8, 919, -443, 448, -164, 61, -11, 1, -1, 9, -2974, 1362, -1576, 612, -298, 72, -13, 1, 1, -10, 9891, -4336, 5510, -2188, 1294, -370, 99, -14, 1, -1, 11, -33604, 14227, -19322, 7698
Offset: 0
Rows begin:
1;
-1,1;
1,-2,1;
-1,3,-4,1;
1,-4,12,-5,1;
-1,5,-34,17,-7,1;
1,-6,98,-51,32,-8,1;
-1,7,-294,149,-124,40,-10,1;
1,-8,919,-443,448,-164,61,-11,1;
-1,9,-2974,1362,-1576,612,-298,72,-13,1; ...
-
{T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k));polcoeff(polcoeff( (1+X*Y/(1+X))/(1+X-Y^2*(1-(1+4*X)^(1/2))^2/4),n,x),k,y)}
A136518
a(n) = A027907(2^n, n), where A027907 = triangle of trinomial coefficients.
Original entry on oeis.org
1, 2, 10, 112, 3620, 360096, 116950848, 129755798400, 507413158135840, 7132358041777380352, 364730093112968976177664, 68393665694364347188157159424, 47308574208170527265149009962117120
Offset: 0
A(x) = 1 + 2*x + 10*x^2 + 112*x^3 + 3620*x^4 + 360096*x^5 + ...
A(x) = 1 + log(1 +2*x +4*x^2) + log(1 +4*x +16*x^2)^2/2! + log(1 +8*x +64*x^2)^3/3! + ...
-
m:=40;
gf:= func< x | (&+[Log(1 +2^j*x +4^j*x^2)^j/Factorial(j): j in [0..m+1]]) >;
R:=PowerSeriesRing(Rationals(), m);
Coefficients(R!( gf(x) )); // G. C. Greubel, Jul 27 2023
-
With[{m=40, f= 1 +2^j*x +4^j*x^2}, CoefficientList[Series[ Sum[Log[f]^j/j!, {j,0,m+1}], {x,0,m}], x]] (* G. C. Greubel, Jul 27 2023 *)
-
a(n)=polcoeff((1+x+x^2+x*O(x^n))^(2^n),n)
-
/* As coefficient x^n of Series: */ a(n)=polcoeff(sum(i=0,n,log(1+2^i*x+2^(2*i)*x^2 +x*O(x^n))^i/i!),n)
-
m=40
def f(x): return sum( log(1 + 2^j*x + 4^j*x^2)^j/factorial(j) for j in range(m+2) )
def A136518_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(x) ).list()
A136518_list(m) # G. C. Greubel, Jul 27 2023
A136519
a(n) = A027907(2^n+1, n), where A027907 = triangle of trinomial coefficients.
Original entry on oeis.org
1, 3, 15, 156, 4556, 417384, 128004240, 136874853504, 523288667468832, 7257782720507161152, 368292386875012729754240, 68761030015590030510485191680, 47447175348985315294381264871833600
Offset: 0
A(x) = 1 + 3*x + 15*x^2 + 156*x^3 + 4556*x^4 + 417384*x^5 + ...
A(x) = (1 +x +x^2) + (1 +2*x +4*x^2)*log(1 +2*x +4*x^2) + (1 +4*x +16*x^2)*log(1 +4*x +16*x^2)^2/2! + (1 +8*x +64*x^2)*log(1 +8*x +64*x^2)^3/3! + (1 +16*x +256*x^2)*log(1 +16*x +256*x^2)^4/4! + ...
This is a special case of the more general statement:
Sum_{n>=0} m^n * F(q^n*x)^b * log( F(q^n*x) )^n / n! =
Sum_{n>=0} x^n * [y^n] F(y)^(m*q^n + b)
where F(x) = 1+x+x^2, q=2, m=1, b=1.
-
m:=40; // gf of A136519
gf:= func< x | (&+[(1 +2^j*x +4^j*x^2)*Log(1 +2^j*x +4^j*x^2)^j/Factorial(j): j in [0..m+1]]) >;
R:=PowerSeriesRing(Rationals(), m);
Coefficients(R!( gf(x) )); // G. C. Greubel, Jul 27 2023
-
With[{m=40, f= 1 +2^j*x +4^j*x^2}, CoefficientList[Series[ Sum[f*Log[f]^j/j!, {j,0,m+1}], {x,0,m}], x]] (* G. C. Greubel, Jul 27 2023 *)
-
a(n)=polcoeff((1+x+x^2+x*O(x^n))^(2^n+1),n)
-
/* As coefficient x^n of Series: */ a(n)=polcoeff(sum(i=0,n,(1+2^i*x+2^(2*i)*x^2)*log(1+2^i*x+2^(2*i)*x^2 +x*O(x^n))^i/i!),n)
-
m=40
def f(x): return sum( (1 + 2^j*x + 4^j*x^2)*log(1 + 2^j*x + 4^j*x^2)^j/factorial(j) for j in range(m+2) )
def A136519_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(x) ).list()
A136519_list(m) # G. C. Greubel, Jul 27 2023
A200475
G.f. satisfies: A(x) = exp( Sum_{n>=1} (Sum_{k=0..2*n} A027907(n,k)^2 * x^k * A(x)^(2*k)) * x^n*A(x)^n/n ), where A027907 is the triangle of trinomial coefficients.
Original entry on oeis.org
1, 1, 3, 13, 65, 350, 1981, 11627, 70132, 432090, 2707595, 17202779, 110563543, 717547090, 4695774335, 30952628861, 205318395288, 1369539030021, 9180527051187, 61813112864984, 417850301293691, 2834802846097200, 19294989810689802, 131723105933867817, 901709774424393614
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 65*x^4 + 350*x^5 + 1981*x^6 +...
Let A = g.f. A(x), then the logarithm of the g.f. equals the series:
log(A(x)) = (1 + x*A^2 + x^2*A^4)*x*A +
(1 + 2^2*x*A^2 + 3^2*x^2*A^4 + 2^2*x^3*A^6 + x^4*A^8)*x^2*A^2/2 +
(1 + 3^2*x*A^2 + 6^2*x^2*A^4 + 7^2*x^3*A^6 + 6^2*x^4*A^8 + 3^2*x^5*A^10 + x^6*A^12)*x^3*A^3/3 +
(1 + 4^2*x*A^2 + 10^2*x^2*A^4 + 16^2*x^3*A^6 + 19^2*x^4*A^8 + 16^2*x^5*A^10 + 10^2*x^6*A^12 + 4^2*x^7*A^14 + x^8*A^16)*x^4*A^4/4 +
(1 + 5^2*x*A^2 + 15^2*x^2*A^4 + 30^2*x^3*A^6 + 45^2*x^4*A^8 + 51^2*x^5*A^10 + 45^2*x^6*A^12 + 30^2*x^7*A^14 + 15^2*x^8*A^16 + 5^2*x^9*A^18 + x^10*A^20)*x^5*A^5/5 +...
which involves the squares of the trinomial coefficients A027907(n,k).
-
{a(n)=local(A=1+x);for(i=1,n,A=(1-x*A^2+x^3*A^6-x^5*A^10+x^6*A^12)/(1-x*A^2+x*O(x^n))^2);polcoeff(A,n)}
-
/* G.f. A(x) using the squares of the trinomial coefficients */
{A027907(n, k)=polcoeff((1+x+x^2)^n, k)}
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, 2*m, A027907(m, k)^2 *x^k*(A+x*O(x^n))^(2*k))*x^m*A^m/m))); polcoeff(A, n)}
Original entry on oeis.org
1, 6, 36, 210, 1221, 7098, 41328, 241128, 1409895, 8260934, 48497064, 285219090, 1680166215, 9912297150, 58558256496, 346371955776, 2051126447742, 12158963346852, 72147074769640, 428476010502582, 2546776668682323, 15149061841758174, 90175327717962024
Offset: 2
-
a:= proc(n) option remember; `if`(n<3, n*(n-1)/2,
(14*(2*n-1)*(65*n^3-120*n^2+37*n+6) *a(n-1)
+36*(n-1)*(2*n-1)*(2*n-3)*(13*n+2) *a(n-2))/
(3*(13*n-11)*(n-2)*(3*n+2)*(3*n+1)))
end:
seq(a(n), n=2..25); # Alois P. Heinz, Aug 07 2013
A102588
Absolute row sums of triangle A102587, which is equal to the matrix inverse of triangle A094531 (the right-hand side of trinomial table A027907).
Original entry on oeis.org
1, 2, 4, 6, 12, 22, 34, 58, 112, 186, 320, 574, 954, 1640, 2926, 5180, 8524, 14928, 25514, 44994, 77674, 138446, 233402, 395832, 704376, 1223902, 2134912, 3628044, 6288414, 10626878, 19171626, 32535060, 57067872, 97164452, 169386950
Offset: 0
-
{a(n)=local(A); A=matrix(n+1,n+1,r,c,if(r
A104029
Triangle, read by rows, of pairwise sums of trinomial coefficients (A027907).
Original entry on oeis.org
1, 2, 1, 3, 5, 1, 4, 13, 9, 1, 5, 26, 35, 14, 1, 6, 45, 96, 75, 20, 1, 7, 71, 216, 267, 140, 27, 1, 8, 105, 427, 750, 623, 238, 35, 1, 9, 148, 770, 1800, 2123, 1288, 378, 44, 1, 10, 201, 1296, 3858, 6046, 5211, 2436, 570, 54, 1, 11, 265, 2067, 7590, 15115, 17303, 11505
Offset: 0
Row 3: {4,13,9,1} is formed from the pairwise sums
of row 3 of A027907: {1,3, 6,7, 6,3, 1}.
Rows begin:
1;
2, 1;
3, 5, 1;
4, 13, 9, 1;
5, 26, 35, 14, 1;
6, 45, 96, 75, 20, 1;
7, 71, 216, 267, 140, 27, 1;
8, 105, 427, 750, 623, 238, 35, 1;
9, 148, 770, 1800, 2123, 1288, 378, 44, 1;
10, 201, 1296, 3858, 6046, 5211, 2436, 570, 54, 1;
11, 265, 2067, 7590, 15115, 17303, 11505, 4302, 825, 65, 1;
12, 341, 3157, 13959, 34210, 49721, 43923, 23397, 7194, 1155, 77, 1; ...
-
{T(n,k)=polcoeff((1+x+x^2)^n+x*O(x^(2*k)),2*k)+ polcoeff((1+x+x^2)^n+x*O(x^(2*k+1)),2*k+1)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
{T(n,k)=polcoeff(polcoeff((1-x*y)/(1-2*x*(1+y)+x^2*(1+y+y^2)) +x*O(x^n),n,x)+y*O(y^k),k,y)}
A168591
a(n) = sum of the n-th power of the trinomial coefficients in row n of triangle A027907.
Original entry on oeis.org
1, 3, 19, 831, 281907, 764206503, 16955359883149, 3120135986465328015, 4819828380706011142058787, 63004580363300194268932114354503, 7017256966823394610075464951176481843849
Offset: 0
A200377
G.f.: A(x) = exp( Sum_{n>=1} (Sum_{k=0..2*n} A027907(n,k)^2 * x^k / A(x)^k) * x^n/n ).
Original entry on oeis.org
1, 1, 2, 4, 7, 11, 19, 34, 61, 106, 181, 311, 543, 955, 1668, 2885, 4980, 8650, 15114, 26391, 45845, 79385, 137718, 239866, 418338, 727926, 1263097, 2191463, 3810775, 6638258, 11556361, 20078960, 34855400, 60567092, 105405431, 183483906, 319039355, 554158992, 962743619, 1674359119, 2913758685, 5068194691
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 7*x^4 + 11*x^5 + 19*x^6 + 34*x^7 +...
Let A = g.f. A(x), then the logarithm of the g.f. equals the series:
log(A(x)) = (1 + x/A + x^2/A^2)*x +
(1 + 2^2*x/A + 3^2*x^2/A^2 + 2^2*x^3/A^3 + x^4/A^4)*x^2/2 +
(1 + 3^2*x/A + 6^2*x^2/A^2 + 7^2*x^3/A^3 + 6^2*x^4/A^4 + 3^2*x^5/A^5 + x^6/A^6)*x^3/3 +
(1 + 4^2*x/A + 10^2*x^2/A^2 + 16^2*x^3/A^3 + 19^2*x^4/A^4 + 16^2*x^5/A^5 + 10^2*x^6/A^6 + 4^2*x^7/A^7 + x^8/A^8)*x^4/4 +
(1 + 5^2*x/A + 15^2*x^2/A^2 + 30^2*x^3/A^3 + 45^2*x^4/A^4 + 51^2*x^5/A^5 + 45^2*x^6/A^6 + 30^2*x^7/A^7 + 15^2*x^8/A^8 + 5^2*x^9/A^9 + x^10/A^10)*x^5/5 +...
which involves the squares of the trinomial coefficients A027907(n,k).
-
/* G.f. A(x) using the squares of the trinomial coefficients */
{A027907(n, k)=polcoeff((1+x+x^2)^n, k)}
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, 2*m, A027907(m, k)^2 *x^k/(A+x*O(x^n))^k) *x^m/m))); polcoeff(A, n)}
Comments