A104004
Expansion of (1-x) * (1+x) / ((1-2*x)*(1-x-x^2)).
Original entry on oeis.org
1, 3, 7, 16, 35, 75, 158, 329, 679, 1392, 2839, 5767, 11678, 23589, 47555, 95720, 192427, 386451, 775486, 1555153, 3117071, 6245088, 12507887, 25044431, 50135230, 100345485, 200812363, 401821144, 803960099, 1608434427, 3217700894, 6436748057
Offset: 0
Cf.
A000045,
A000079,
A001911,
A008466,
A016777,
A022958,
A027934,
A042950,
A078024,
A099036,
A221719.
-
[3*2^n-Fibonacci(n+3): n in [0..40]]; // Vincenzo Librandi, Aug 18 2017
-
with (combinat):a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=fibonacci(n-1)+2*a[n-1] od: seq(a[n], n=1..26); # Zerinvary Lajos, Mar 17 2008
-
LinearRecurrence[{3, -1, -2}, {1, 3, 7}, 80] (* Vincenzo Librandi, Aug 18 2017 *)
CoefficientList[Series[(1-x)(1+x)/((2x-1)(x^2+x-1)),{x,0,40}],x] (* Harvey P. Dale, Oct 12 2024 *)
A104004[n_]:= 3*2^n -Fibonacci[n+3]; (* G. C. Greubel, Jun 05 2025 *)
-
def A104004(n): return 3*2**n - fibonacci(n+3) # G. C. Greubel, Jun 05 2025
A175660
Eight bishops and one elephant on a 3 X 3 chessboard. a(n) = 2^(n+2) - 3*F(n+2).
Original entry on oeis.org
1, 2, 7, 17, 40, 89, 193, 410, 859, 1781, 3664, 7493, 15253, 30938, 62575, 126281, 254392, 511745, 1028281, 2064314, 4141171, 8302637, 16638112, 33329357, 66744685, 133628474, 267482023, 535328225, 1071245704, 2143444841
Offset: 0
-
nmax:=29; m:=1; A[5]:= [0,1,0,1,0,1,0,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
-
Table[2^(n+2)-3Fibonacci[n+2],{n,0,30}] (* or *) LinearRecurrence[ {3,-1,-2},{1,2,7},30] (* Harvey P. Dale, Dec 28 2012 *)
A104730
Triangle read by rows: T(n,k)=C(n+1,k)-C(k,n-k+1).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 4, 5, 1, 1, 5, 10, 7, 1, 1, 6, 15, 19, 9, 1, 1, 7, 21, 35, 31, 11, 1, 1, 8, 28, 56, 69, 46, 13, 1, 1, 9, 36, 84, 126, 121, 64, 15, 1, 1, 10, 45, 120, 210, 251, 195, 85, 17, 1, 1, 11, 55, 165, 330, 462, 456, 295, 109, 19, 1, 1, 12, 66
Offset: 1
The first few rows of the triangle are:
1;
1, 1;
1, 3, 1;
1, 4, 5, 1;
1, 5, 10, 7, 1;
1, 6, 15, 19, 9, 1;
1, 7, 31, 35, 31, 11, 1;
...
-
Table[Binomial[n+1,k]-Binomial[k,n-k+1],{n,0,20},{k,0,n}]//Flatten (* Harvey P. Dale, Jan 16 2024 *)
A109433
Triangle read by rows: T(n,m) = number of binary numbers n+1 digits long which have m 1's as a substring.
Original entry on oeis.org
1, 2, 1, 4, 2, 1, 8, 5, 2, 1, 16, 11, 5, 2, 1, 32, 24, 12, 5, 2, 1, 64, 51, 27, 12, 5, 2, 1, 128, 107, 60, 28, 12, 5, 2, 1, 256, 222, 131, 63, 28, 12, 5, 2, 1, 512, 457, 282, 140, 64, 28, 12, 5, 2, 1, 1024, 935, 601, 307, 143, 64, 28, 12, 5, 2, 1, 2048, 1904, 1270, 666, 316, 144
Offset: 0
T(4,2)=11 because of the sixteen binary digits which are 5 long, {10000, 10001, 10010, 10011, 10100, 10101, 10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111}, 11 have "11" as a substring.
Triangle begins:
n\m
0 1 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0
2 4 2 1 0 0 0 0 0 0 0
3 8 5 2 1 0 0 0 0 0 0
4 16 11 5 2 1 0 0 0 0 0
5 32 24 12 5 2 1 0 0 0 0
First column =
A000079 = Powers of 2, the second column =
A027934 = number of compositions of n with at least one even part and the last column =
A045623 = number of 1's in all compositions of n+1.
-
T[n_, m_] := Length[ Select[ StringPosition[ #, ToString[(10^m - 1)/9]] & /@ Table[ ToString[ FromDigits[ IntegerDigits[i, 2]]], {i, 2^n, 2^(n + 1) - 1}], # != {} &]]; Flatten[ Table[ T[n, m], {n, 0, 11}, {m, n + 1}]]
A131238
Triangle read by rows: T(n,k) = 2*binomial(n,k) - binomial(floor((n+k)/2), k) (0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 4, 5, 1, 1, 6, 9, 7, 1, 1, 7, 17, 16, 9, 1, 1, 9, 24, 36, 25, 11, 1, 1, 10, 36, 60, 65, 36, 13, 1, 1, 12, 46, 102, 125, 106, 49, 15, 1, 1, 13, 62, 148, 237, 231, 161, 64, 17, 1, 1, 15, 75, 220, 385, 483, 392, 232, 81, 19, 1, 1, 16, 95, 295, 625, 868, 896, 624, 321, 100, 21, 1
Offset: 0
First few rows of the triangle:
1;
1, 1;
1, 3, 1;
1, 4, 5, 1;
1, 6, 9, 7, 1;
1, 7, 17, 16, 9, 1;
1, 9, 24, 36, 25, 11, 1;
1, 10, 36, 60, 65, 36, 13, 1;
...
-
B:=Binomial;; Flat(List([0..12], n-> List([0..n], k-> 2*B(n,k) - B(Int((n+k)/2), k) ))); # G. C. Greubel, Jul 12 2019
-
B:=Binomial; [2*B(n,k) - B(Floor((n+k)/2), k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2019
-
T := proc (n, k) options operator, arrow; 2*binomial(n, k)-binomial(floor((1/2)*n+(1/2)*k), k) end proc: for n from 0 to 9 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jul 09 2007
-
With[{B = Binomial}, Table[2*B[n, k] - B[Floor[(n+k)/2], k], {n,0,12}, {k,0,n}]]//Flatten (* G. C. Greubel, Jul 12 2019 *)
-
b=binomial; T(n,k) = 2*b(n,k) - b((n+k)\2, k);
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 12 2019
-
b=binomial; [[2*b(n,k) - b(floor((n+k)/2), k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 12 2019
A104487
a(n+3) = 6a(n+2) - 10a(n+1) + 3a(n); a(0) = 1, a(1) = 4, a(2) = 14.
Original entry on oeis.org
1, 4, 14, 47, 154, 496, 1577, 4964, 15502, 48103, 148490, 456416, 1397905, 4268740, 13002638, 39522143, 119912698, 363262672, 1099015481, 3321204260, 10026858766, 30246156439, 91171963754, 274650794432, 826923598369
Offset: 0
Comment concerning the binomial transforms corrected by
R. J. Mathar, Oct 26 2009
A119587
2^n + 1 - 2*Fibonacci(n+1).
Original entry on oeis.org
0, 1, 1, 3, 7, 17, 39, 87, 189, 403, 847, 1761, 3631, 7439, 15165, 30795, 62343, 125905, 253783, 510759, 1026685, 2061731, 4136991, 8295873, 16627167, 33311647, 66716029, 133582107, 267406999, 535206833, 1071049287
Offset: 0
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 4, 1, 1, 7, 9, 6, 1, 1, 9, 16, 17, 7, 1, 1, 11, 25, 36, 24, 9, 1, 1, 13, 36, 65, 60, 36, 10, 1, 1, 15, 49, 106, 125, 102, 46, 12, 1, 1, 17, 64, 161, 231, 237, 148, 62, 13, 1
Offset: 0
First few rows of the triangle are:
1;
1, 1;
1, 3, 1;
1, 5, 4, 1;
1, 7, 9, 6, 1;
1, 9, 16, 17, 7, 1;
1, 11, 25, 36, 24, 9, 1;
...
A103316
Riordan array (1/(1+2x), x/(1+x)).
Original entry on oeis.org
1, -2, 1, 4, -3, 1, -8, 7, -4, 1, 16, -15, 11, -5, 1, -32, 31, -26, 16, -6, 1, 64, -63, 57, -42, 22, -7, 1, -128, 127, -120, 99, -64, 29, -8, 1, 256, -255, 247, -219, 163, -93, 37, -9, 1, -512, 511, -502, 466, -382, 256, -130, 46, -10, 1, 1024, -1023, 1013, -968, 848, -638, 386, -176, 56, -11, 1, -2048, 2047, -2036, 1981
Offset: 0
Rows start {1}, {-2,1}, {4,-3,1}, {-8,7,-4,1},...
A213945
Triangle by rows, generated from aerated sequences of 1's.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 11, 1, 1, 1, 1, 4, 24, 1, 1, 1, 1, 2, 7, 51, 1, 1, 1, 1, 1, 4, 12, 107, 1, 1, 1, 1, 1, 2, 6, 21, 222, 1, 1, 1, 1, 1, 1, 4, 9, 36, 457, 1, 1, 1, 1, 1, 1, 2, 6, 14, 61, 935, 1, 1, 1, 1, 1, 1, 1, 4, 8, 22, 103, 1904, 1, 1, 1, 1, 1, 1, 1, 2, 6, 11, 34, 173, 3863
Offset: 0
First few rows of the array are:
1, 2, 4, 8, 16, 32, 64, 128, 256,...
1, 1, 2, 3,..5,..8,.13,..21,..34,...
1, 1, 1, 2,..3,..4,..6,...9,..13,...
1, 1, 1, 1, 2,..3,..4,...5,...7,...
... Then, take finite differences from the top -> down, getting the triangle:
1;
1, 1;
1, 1, 2;
1, 1, 1, 5;
1, 1, 1, 2, 11;
1, 1, 1, 1, 4, 24;
1, 1, 1, 1, 2, 7, 51;
1, 1, 1, 1, 1, 4, 12, 107;
1, 1, 1, 1, 1, 2, 6, 21, 222;
1, 1, 1, 1, 1, 1, 4, 9, 36, 457;
...
Comments