A248883
Expansion of Product_{k>=1} (1+x^k)^(k^4).
Original entry on oeis.org
1, 1, 16, 97, 457, 2297, 11113, 52049, 235334, 1039886, 4497930, 19074006, 79418883, 325184763, 1311252535, 5212704708, 20449320159, 79231806015, 303428397505, 1149325838320, 4308477305997, 15993198330782, 58815616643170, 214383601754107, 774837953045873
Offset: 0
-
m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+x^k)^k^4: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
-
b:= proc(n) option remember; add(
(-1)^(n/d+1)*d^5, d=numtheory[divisors](n))
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(b(k)*a(n-k), k=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Oct 16 2017
-
nmax=50; CoefficientList[Series[Product[(1+x^k)^(k^4),{k,1,nmax}],{x,0,nmax}],x]
-
x = 'x + O('x^50); Vec(prod(k=1, 50, (1 + x^k)^(k^4))) \\ Indranil Ghosh, Apr 06 2017
A248884
Expansion of Product_{k>=1} (1+x^k)^(k^5).
Original entry on oeis.org
1, 1, 32, 275, 1763, 12421, 85808, 561074, 3535678, 21815897, 131733641, 778099521, 4505634324, 25635135074, 143507764032, 791243636305, 4300983535471, 23070300486656, 122213931799869, 639848848696540, 3312824859756453, 16972058378914997, 86082216143323410
Offset: 0
-
m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+x^k)^k^5: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
-
b:= proc(n) option remember; add(
(-1)^(n/d+1)*d^6, d=numtheory[divisors](n))
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(b(k)*a(n-k), k=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Oct 16 2017
-
nmax=50; CoefficientList[Series[Product[(1+x^k)^(k^5),{k,1,nmax}],{x,0,nmax}],x]
-
m=50; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^k^5)) \\ G. C. Greubel, Oct 31 2018
A258341
Expansion of Product_{k>=1} (1+x^k)^(k*(k+1)).
Original entry on oeis.org
1, 2, 7, 24, 65, 184, 487, 1254, 3145, 7706, 18480, 43490, 100692, 229472, 515802, 1144416, 2508948, 5439642, 11671859, 24801738, 52221911, 109013538, 225718717, 463769652, 945915199, 1915895576, 3854803572, 7706786958, 15314564282, 30255672820, 59440488874
Offset: 0
-
nmax=30; CoefficientList[Series[Product[(1+x^k)^(k*(k+1)),{k,1,nmax}],{x,0,nmax}],x]
A258344
Expansion of Product_{k>=1} (1+x^k)^(k*(k-1)).
Original entry on oeis.org
1, 0, 2, 6, 13, 32, 69, 160, 344, 760, 1601, 3384, 7022, 14434, 29361, 59140, 118089, 233754, 459293, 895382, 1733904, 3334914, 6374654, 12111632, 22881777, 42993244, 80362496, 149464404, 276657082, 509740278, 935046158, 1707916988, 3106810873, 5629121054
Offset: 0
-
nmax=50; CoefficientList[Series[Product[(1+x^k)^(k*(k-1)),{k,1,nmax}],{x,0,nmax}],x]
A261050
Expansion of Product_{k>=1} (1+x^k)^(Fibonacci(k)).
Original entry on oeis.org
1, 1, 1, 3, 5, 10, 19, 36, 67, 127, 236, 438, 811, 1496, 2750, 5046, 9224, 16827, 30630, 55623, 100803, 182342, 329205, 593326, 1067591, 1917885, 3440207, 6162004, 11021921, 19688757, 35126020, 62590629, 111398910, 198044551, 351700332, 623918086, 1105715149
Offset: 0
-
f:= proc(n) option remember; (<<1|1>, <1|0>>^n)[1, 2] end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(f(i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 08 2015
-
nmax=40; CoefficientList[Series[Product[(1+x^k)^Fibonacci[k],{k,1,nmax}],{x,0,nmax}],x]
A284992
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1+x^j)^(j^k) in powers of x.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 5, 2, 1, 1, 8, 13, 8, 3, 1, 1, 16, 35, 31, 16, 4, 1, 1, 32, 97, 119, 83, 28, 5, 1, 1, 64, 275, 457, 433, 201, 49, 6, 1, 1, 128, 793, 1763, 2297, 1476, 487, 83, 8, 1, 1, 256, 2315, 6841, 12421, 11113, 4962, 1141, 142, 10, 1, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 4, 8, 16, 32, 64, 128, ...
2, 5, 13, 35, 97, 275, 793, 2315, ...
2, 8, 31, 119, 457, 1763, 6841, 26699, ...
3, 16, 83, 433, 2297, 12421, 68393, 382573, ...
4, 28, 201, 1476, 11113, 85808, 678101, 5466916, ...
5, 49, 487, 4962, 52049, 561074, 6189117, 69540142, ...
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*binomial(i^k, j), j=0..n/i)))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14); # Alois P. Heinz, Oct 16 2017
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
Sum[b[n - i*j, i - 1, k]*Binomial[i^k, j], {j, 0, n/i}]]];
A[n_, k_] := b[n, n, k];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 10 2021, after Alois P. Heinz *)
A294102
Expansion of Product_{k>=1} (1 + x^k)^(k*(3*k-1)/2).
Original entry on oeis.org
1, 1, 5, 17, 44, 127, 332, 866, 2182, 5412, 13119, 31292, 73516, 170136, 388829, 877653, 1959111, 4327221, 9464856, 20511598, 44067446, 93901142, 198539477, 416696608, 868448305, 1797890682, 3698350956, 7561361750, 15369154555, 31064311255, 62449795986, 124895635385, 248538538858, 492207649241
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Pentagonal Number
-
nmax = 33; CoefficientList[Series[Product[(1 + x^k)^(k (3 k - 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (3 d - 1)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 33}]
A294837
Expansion of Product_{k>=1} (1 + x^k)^(k*(5*k-3)/2).
Original entry on oeis.org
1, 1, 7, 25, 73, 236, 688, 1994, 5573, 15272, 40896, 107526, 277999, 707209, 1774067, 4390665, 10734216, 25941541, 62022609, 146793160, 344129900, 799517074, 1841734224, 4208327222, 9542121050, 21477834062, 48005313446, 106579556936, 235107392079, 515441826521, 1123360284127, 2434346065621
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..8757
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Heptagonal Number
-
nmax = 31; CoefficientList[Series[Product[(1 + x^k)^(k (5 k - 3)/2), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (5 d - 3)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 31}]
A294838
Expansion of Product_{k>=1} (1 + x^k)^(k*(3*k-2)).
Original entry on oeis.org
1, 1, 8, 29, 89, 301, 915, 2763, 8040, 22910, 63776, 174174, 467448, 1233836, 3209679, 8234149, 20857621, 52206847, 129227514, 316543962, 767767628, 1844925743, 4394337797, 10379319118, 24320964976, 56557678603, 130571770387, 299357973400, 681777058604, 1542840256421, 3470045577372
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..8270
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Octagonal Number
-
nmax = 30; CoefficientList[Series[Product[(1 + x^k)^(k (3 k - 2)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (3 d - 2), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 30}]
A261053
Expansion of Product_{k>=1} (1+x^k)^(k^k).
Original entry on oeis.org
1, 1, 4, 31, 289, 3495, 51268, 891152, 17926913, 409907600, 10499834497, 297793199060, 9262502810645, 313457634240463, 11464902463397642, 450646709610954343, 18943070964019019671, 847932498252050293971, 40266255926484893366914, 2021845081107882645459639
Offset: 0
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1+x^k)^(k^k): k in [1..(m+2)]]))); // G. C. Greubel, Nov 08 2018
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(i^i, j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 08 2015
-
nmax=20; CoefficientList[Series[Product[(1+x^k)^(k^k),{k,1,nmax}],{x,0,nmax}],x]
-
m=20; x='x+O('x^m); Vec(prod(k=1,m, (1+x^k)^(k^k))) \\ G. C. Greubel, Nov 08 2018
Comments