A026007
Expansion of Product_{m>=1} (1 + q^m)^m; number of partitions of n into distinct parts, where n different parts of size n are available.
Original entry on oeis.org
1, 1, 2, 5, 8, 16, 28, 49, 83, 142, 235, 385, 627, 1004, 1599, 2521, 3940, 6111, 9421, 14409, 21916, 33134, 49808, 74484, 110837, 164132, 241960, 355169, 519158, 755894, 1096411, 1584519, 2281926, 3275276, 4685731, 6682699, 9501979, 13471239, 19044780, 26850921, 37756561, 52955699
Offset: 0
For n = 4, we have 8 partitions
01: [4]
02: [4']
03: [4'']
04: [4''']
05: [3, 1]
06: [3', 1]
07: [3'', 1]
08: [2, 2']
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, A unified treatment of families of partition functions, La Matematica (2024). Preprint available as arXiv:2303.02240 [math.CO], 2023.
- Vaclav Kotesovec, Graph - The asymptotic ratio
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 18.
-
with(numtheory):
b:= proc(n) option remember;
add((-1)^(n/d+1)*d^2, d=divisors(n))
end:
a:= proc(n) option remember;
`if`(n=0, 1, add(b(k)*a(n-k), k=1..n)/n)
end:
seq(a(n), n=0..45); # Alois P. Heinz, Aug 03 2013
-
a[n_] := a[n] = 1/n*Sum[Sum[(-1)^(k/d+1)*d^2, {d, Divisors[k]}]*a[n-k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Apr 17 2014, after Vladeta Jovovic *)
nmax=50; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*x^k/(k*(1-x^k)^2),{k,1,nmax}]],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)
-
N=66; q='q+O('q^N);
gf= prod(n=1,N, (1+q^n)^n );
Vec(gf)
/* Joerg Arndt, Oct 06 2012 */
A027998
Expansion of Product_{m>=1} (1+q^m)^(m^2).
Original entry on oeis.org
1, 1, 4, 13, 31, 83, 201, 487, 1141, 2641, 5972, 13309, 29248, 63360, 135688, 287197, 601629, 1247909, 2565037, 5226816, 10565132, 21192569, 42202909, 83466925, 163999684, 320230999, 621579965, 1199659836, 2302765961, 4397132933, 8354234552, 15795913477
Offset: 0
-
m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+x^k)^k^2: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
-
with(numtheory):
b:= proc(n) option remember;
add((-1)^(n/d+1)*d^3, d=divisors(n))
end:
a:= proc(n) option remember;
`if`(n=0, 1, add(b(k)*a(n-k), k=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Aug 03 2013
-
a[0] = 1; a[n_] := a[n] = 1/n*Sum[Sum[(-1)^(k/d+1)*d^3, {d, Divisors[k]}]*a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 31} ] (* Jean-François Alcover, Jan 17 2014, after Vladeta Jovovic *)
nmax=50; CoefficientList[Series[Product[(1+x^k)^(k^2),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 05 2015 *)
-
x = 'x + O('x ^ 50); Vec(prod(k=1, 50, (1 + x^k)^(k^2))) \\ Indranil Ghosh, Apr 05 2017
A248882
Expansion of Product_{k>=1} (1+x^k)^(k^3).
Original entry on oeis.org
1, 1, 8, 35, 119, 433, 1476, 4962, 16128, 51367, 160105, 490219, 1476420, 4378430, 12805008, 36962779, 105417214, 297265597, 829429279, 2291305897, 6270497702, 17008094490, 45744921052, 122052000601, 323166712109, 849453194355, 2217289285055, 5749149331789
Offset: 0
-
m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+x^k)^k^3: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
-
b:= proc(n) option remember; add(
(-1)^(n/d+1)*d^4, d=numtheory[divisors](n))
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(b(k)*a(n-k), k=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Oct 16 2017
-
nmax=50; CoefficientList[Series[Product[(1+x^k)^(k^3),{k,1,nmax}],{x,0,nmax}],x]
-
x = 'x + O('x^50); Vec(prod(k=1, 50, (1 + x^k)^(k^3))) \\ Indranil Ghosh, Apr 06 2017
A206624
G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^4).
Original entry on oeis.org
1, 2, 34, 228, 1414, 8872, 52876, 301136, 1662614, 8929406, 46738920, 239036116, 1197187780, 5882369976, 28397283056, 134864166352, 630819797174, 2908948327780, 13236421303742, 59477002686404, 264104800719672, 1159649708139680, 5037895127964316
Offset: 0
G.f.: A(x) = 1 + 2*x + 18*x^2 + 88*x^3 + 398*x^4 + 1768*x^5 + 7508*x^6 +...
where A(x) = (1+x)/(1-x) * (1+x^2)^16/(1-x^2)^16 * (1+x^3)^81/(1-x^3)^81 *...
Also, A(x) = Euler transform of [2,31,162,496,1250,2511,4802,7936,...]:
A(x) = 1/((1-x)^2*(1-x^2)^31*(1-x^3)^162*(1-x^4)^496*(1-x^5)^1250*(1-x^6)^2511*...).
-
nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
-
{a(n)=polcoeff(prod(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))^(m^4)),n)}
-
{a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 5)-sigma(m, 5))/16*x^m/m)+x*O(x^n)), n)}
-
{a(n)=local(InvEulerGF=x*(2+31*x+152*x^2+341*x^3+460*x^4+341*x^5+152*x^6+31*x^7+2*x^8)/(1-x^2+x*O(x^n))^5); polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^polcoeff(InvEulerGF,k)),n)}
for(n=0,30,print1(a(n),", "))
A248884
Expansion of Product_{k>=1} (1+x^k)^(k^5).
Original entry on oeis.org
1, 1, 32, 275, 1763, 12421, 85808, 561074, 3535678, 21815897, 131733641, 778099521, 4505634324, 25635135074, 143507764032, 791243636305, 4300983535471, 23070300486656, 122213931799869, 639848848696540, 3312824859756453, 16972058378914997, 86082216143323410
Offset: 0
-
m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+x^k)^k^5: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
-
b:= proc(n) option remember; add(
(-1)^(n/d+1)*d^6, d=numtheory[divisors](n))
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(b(k)*a(n-k), k=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Oct 16 2017
-
nmax=50; CoefficientList[Series[Product[(1+x^k)^(k^5),{k,1,nmax}],{x,0,nmax}],x]
-
m=50; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^k^5)) \\ G. C. Greubel, Oct 31 2018
A284992
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1+x^j)^(j^k) in powers of x.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 5, 2, 1, 1, 8, 13, 8, 3, 1, 1, 16, 35, 31, 16, 4, 1, 1, 32, 97, 119, 83, 28, 5, 1, 1, 64, 275, 457, 433, 201, 49, 6, 1, 1, 128, 793, 1763, 2297, 1476, 487, 83, 8, 1, 1, 256, 2315, 6841, 12421, 11113, 4962, 1141, 142, 10, 1, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 4, 8, 16, 32, 64, 128, ...
2, 5, 13, 35, 97, 275, 793, 2315, ...
2, 8, 31, 119, 457, 1763, 6841, 26699, ...
3, 16, 83, 433, 2297, 12421, 68393, 382573, ...
4, 28, 201, 1476, 11113, 85808, 678101, 5466916, ...
5, 49, 487, 4962, 52049, 561074, 6189117, 69540142, ...
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*binomial(i^k, j), j=0..n/i)))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14); # Alois P. Heinz, Oct 16 2017
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
Sum[b[n - i*j, i - 1, k]*Binomial[i^k, j], {j, 0, n/i}]]];
A[n_, k_] := b[n, n, k];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 10 2021, after Alois P. Heinz *)
A284898
Expansion of Product_{k>=1} 1/(1+x^k)^(k^4) in powers of x.
Original entry on oeis.org
1, -1, -15, -66, -54, 725, 4580, 12739, 3346, -149076, -791226, -2182124, -1656973, 16553206, 100646954, 318795473, 506196578, -818806580, -9148048880, -36415709566, -87180585636, -70923559814, 484810027389, 2992082912770, 9866919438716, 19936695359140
Offset: 0
-
CoefficientList[Series[Product[1/(1 + x^k)^(k^4) , {k, 40}], {x, 0, 40}], x] (* Indranil Ghosh, Apr 05 2017 *)
-
x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^4))) \\ Indranil Ghosh, Apr 05 2017
A343324
Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^(k^4).
Original entry on oeis.org
1, 16, 81, 376, 625, 2592, 2401, 8752, 9801, 20000, 14641, 71928, 28561, 76832, 101250, 196252, 83521, 366768, 130321, 555000, 388962, 468512, 279841, 1859760, 585625, 913952, 1148202, 2132088, 707281, 4050000, 923521, 4307216, 2371842, 2672672, 3001250, 11242800, 1874161, 4170272
Offset: 1
Showing 1-8 of 8 results.
Comments