cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A026007 Expansion of Product_{m>=1} (1 + q^m)^m; number of partitions of n into distinct parts, where n different parts of size n are available.

Original entry on oeis.org

1, 1, 2, 5, 8, 16, 28, 49, 83, 142, 235, 385, 627, 1004, 1599, 2521, 3940, 6111, 9421, 14409, 21916, 33134, 49808, 74484, 110837, 164132, 241960, 355169, 519158, 755894, 1096411, 1584519, 2281926, 3275276, 4685731, 6682699, 9501979, 13471239, 19044780, 26850921, 37756561, 52955699
Offset: 0

Views

Author

Keywords

Comments

In general, for t > 0, if g.f. = Product_{m>=1} (1 + t*q^m)^m then a(n) ~ c^(1/6) * exp(3^(2/3) * c^(1/3) * n^(2/3) / 2) / (3^(2/3) * (t+1)^(1/12) * sqrt(2*Pi) * n^(2/3)), where c = Pi^2*log(t) + log(t)^3 - 6*polylog(3, -1/t). - Vaclav Kotesovec, Jan 04 2016

Examples

			For n = 4, we have 8 partitions
  01: [4]
  02: [4']
  03: [4'']
  04: [4''']
  05: [3, 1]
  06: [3', 1]
  07: [3'', 1]
  08: [2, 2']
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember;
          add((-1)^(n/d+1)*d^2, d=divisors(n))
        end:
    a:= proc(n) option remember;
          `if`(n=0, 1, add(b(k)*a(n-k), k=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    a[n_] := a[n] = 1/n*Sum[Sum[(-1)^(k/d+1)*d^2, {d, Divisors[k]}]*a[n-k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Apr 17 2014, after Vladeta Jovovic *)
    nmax=50; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*x^k/(k*(1-x^k)^2),{k,1,nmax}]],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)
  • PARI
    N=66; q='q+O('q^N);
    gf= prod(n=1,N, (1+q^n)^n );
    Vec(gf)
    /* Joerg Arndt, Oct 06 2012 */

Formula

a(n) = (1/n)*Sum_{k=1..n} A078306(k)*a(n-k). - Vladeta Jovovic, Nov 22 2002
G.f.: Product_{m>=1} (1+x^m)^m. Weighout transform of natural numbers (A000027). Euler transform of A026741. - Franklin T. Adams-Watters, Mar 16 2006
a(n) ~ zeta(3)^(1/6) * exp((3/2)^(4/3) * zeta(3)^(1/3) * n^(2/3)) / (2^(3/4) * 3^(1/3) * sqrt(Pi) * n^(2/3)), where zeta(3) = A002117. - Vaclav Kotesovec, Mar 05 2015

A027998 Expansion of Product_{m>=1} (1+q^m)^(m^2).

Original entry on oeis.org

1, 1, 4, 13, 31, 83, 201, 487, 1141, 2641, 5972, 13309, 29248, 63360, 135688, 287197, 601629, 1247909, 2565037, 5226816, 10565132, 21192569, 42202909, 83466925, 163999684, 320230999, 621579965, 1199659836, 2302765961, 4397132933, 8354234552, 15795913477
Offset: 0

Views

Author

Keywords

Comments

In general, if g.f. = Product_{k>=1} (1 + x^k)^(c2*k^2 + c1*k + c0) and c2 > 0, then a(n) ~ exp(2*Pi/3 * (14*c2/15)^(1/4) * n^(3/4) + 3*c1 * Zeta(3) / Pi^2 * sqrt(15*n/(14*c2)) + (Pi * c0 * (5/(14*c2))^(1/4) / (2*3^(3/4)) - 9*c1^2 * Zeta(3)^2 * (15/(14*c2))^(5/4) / Pi^5) * n^(1/4) + 2025 * c1^3 * Zeta(3)^3 / (49 * c2^2 * Pi^8) - 15*c0*c1*Zeta(3) / (28*c2 * Pi^2)) * ((7*c2)/15)^(1/8) / (2^(15/8 + c0/2 + c1/12) * n^(5/8)). - Vaclav Kotesovec, Nov 08 2017

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+x^k)^k^2: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
  • Maple
    with(numtheory):
    b:= proc(n) option remember;
          add((-1)^(n/d+1)*d^3, d=divisors(n))
        end:
    a:= proc(n) option remember;
          `if`(n=0, 1, add(b(k)*a(n-k), k=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    a[0] = 1; a[n_] := a[n] = 1/n*Sum[Sum[(-1)^(k/d+1)*d^3, {d, Divisors[k]}]*a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 31} ] (* Jean-François Alcover, Jan 17 2014, after Vladeta Jovovic *)
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(k^2),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 05 2015 *)
  • PARI
    x = 'x + O('x ^ 50); Vec(prod(k=1, 50, (1 + x^k)^(k^2))) \\ Indranil Ghosh, Apr 05 2017
    

Formula

a(n) = 1/n*Sum_{k=1..n} A078307(k)*a(n-k). - Vladeta Jovovic, Nov 22 2002
a(n) ~ 7^(1/8) * exp(2/3 * Pi * (14/15)^(1/4) * n^(3/4)) / (2^(15/8) * 15^(1/8) * n^(5/8)). - Vaclav Kotesovec, Mar 05 2015
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + x^k)/(k*(1 - x^k)^3)). - Ilya Gutkovskiy, May 30 2018

A248882 Expansion of Product_{k>=1} (1+x^k)^(k^3).

Original entry on oeis.org

1, 1, 8, 35, 119, 433, 1476, 4962, 16128, 51367, 160105, 490219, 1476420, 4378430, 12805008, 36962779, 105417214, 297265597, 829429279, 2291305897, 6270497702, 17008094490, 45744921052, 122052000601, 323166712109, 849453194355, 2217289285055, 5749149331789
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 05 2015

Keywords

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+x^k)^k^3: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
  • Maple
    b:= proc(n) option remember; add(
          (-1)^(n/d+1)*d^4, d=numtheory[divisors](n))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(b(k)*a(n-k), k=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Oct 16 2017
  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(k^3),{k,1,nmax}],{x,0,nmax}],x]
  • PARI
    x = 'x + O('x^50); Vec(prod(k=1, 50, (1 + x^k)^(k^3))) \\ Indranil Ghosh, Apr 06 2017
    

Formula

a(n) ~ Zeta(5)^(1/10) * 3^(1/5) * exp(2^(-11/5) * 3^(2/5) * 5^(6/5) * Zeta(5)^(1/5) * n^(4/5)) / (2^(71/120) * 5^(2/5)* sqrt(Pi) * n^(3/5)), where Zeta(5) = A013663.
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A284900(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + 4*x^k + x^(2*k))/(k*(1 - x^k)^4)). - Ilya Gutkovskiy, May 30 2018
Euler transform of A309335. - Georg Fischer, Nov 10 2020

A206624 G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^4).

Original entry on oeis.org

1, 2, 34, 228, 1414, 8872, 52876, 301136, 1662614, 8929406, 46738920, 239036116, 1197187780, 5882369976, 28397283056, 134864166352, 630819797174, 2908948327780, 13236421303742, 59477002686404, 264104800719672, 1159649708139680, 5037895127964316
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Comments

Convolution of A023873 and A248883. - Vaclav Kotesovec, Aug 19 2015
In general, for m >= 0, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(k^m), then a(n) ~ ((2^(m+2)-1) * Gamma(m+2) * Zeta(m+2) / (2^(2*m+3) * n))^((1-2*Zeta(-m))/(2*m+4)) * exp((m+2)/(m+1) * ((2^(m+2)-1) * n^(m+1) * Gamma(m+2) * Zeta(m+2) / 2^(m+1))^(1/(m+2)) + Zeta'(-m)) / sqrt((m+2)*Pi*n). - Vaclav Kotesovec, Aug 19 2015
If m is even and m >= 2, then can be simplified as: a(n) ~ ((2^(m+2)-1) * Gamma(m+2) * Zeta(m+2) / (2^(2*m+3) * n))^(1/(2*m+4)) * exp((m+2)/(m+1) * ((2^(m+2)-1) * n^(m+1) * Gamma(m+2) * Zeta(m+2) / 2^(m+1))^(1/(m+2)) + (-1)^(m/2) * Gamma(m+1) * Zeta(m+1) / (2^(m+1) * Pi^m)) / sqrt((m+2)*Pi*n). - Vaclav Kotesovec, Aug 19 2015

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 88*x^3 + 398*x^4 + 1768*x^5 + 7508*x^6 +...
where A(x) = (1+x)/(1-x) * (1+x^2)^16/(1-x^2)^16 * (1+x^3)^81/(1-x^3)^81 *...
Also, A(x) = Euler transform of [2,31,162,496,1250,2511,4802,7936,...]:
A(x) = 1/((1-x)^2*(1-x^2)^31*(1-x^3)^162*(1-x^4)^496*(1-x^5)^1250*(1-x^6)^2511*...).
		

Crossrefs

Cf. A015128 (m=0), A156616 (m=1), A206622 (m=2), A206623 (m=3), A001160 (sigma_5).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
  • PARI
    {a(n)=polcoeff(prod(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))^(m^4)),n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 5)-sigma(m, 5))/16*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=local(InvEulerGF=x*(2+31*x+152*x^2+341*x^3+460*x^4+341*x^5+152*x^6+31*x^7+2*x^8)/(1-x^2+x*O(x^n))^5); polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^polcoeff(InvEulerGF,k)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} (sigma_5(2*n) - sigma_5(n))/16 * x^n/n ), where sigma_5(n) is the sum of 5th powers of divisors of n (A001160).
Inverse Euler transform has g.f.: x*(2 + 31*x + 152*x^2 + 341*x^3 + 460*x^4 + 341*x^5 + 152*x^6 + 31*x^7 + 2*x^8)/(1-x^2)^5.
a(n) ~ exp(3*2^(2/3)*Pi*n^(5/6)/5 + 3*Zeta(5)/(4*Pi^4)) / (2^(7/6) * 3^(1/2) * n^(7/12)), where Zeta(5) = A013663. - Vaclav Kotesovec, Aug 19 2015
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A096960(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 30 2017

A248884 Expansion of Product_{k>=1} (1+x^k)^(k^5).

Original entry on oeis.org

1, 1, 32, 275, 1763, 12421, 85808, 561074, 3535678, 21815897, 131733641, 778099521, 4505634324, 25635135074, 143507764032, 791243636305, 4300983535471, 23070300486656, 122213931799869, 639848848696540, 3312824859756453, 16972058378914997, 86082216143323410
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 05 2015

Keywords

Comments

In general, for m > 0, if g.f. = Product_{k>=1} (1+x^k)^(k^m), then a(n) ~ 2^(zeta(-m)) * ((1-2^(-m-1)) * Gamma(m+2) * zeta(m+2))^(1/(2*m+4)) * exp((m+2)/(m+1) * ((1-2^(-m-1)) * Gamma(m+2) * zeta(m+2))^(1/(m+2)) * n^((m+1)/(m+2))) / (sqrt(2*Pi*(m+2)) * n^((m+3)/(2*m+4))).

Crossrefs

Cf. A026007 (m=1), A027998 (m=2), A248882 (m=3), A248883 (m=4).
Column k=5 of A284992.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+x^k)^k^5: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
  • Maple
    b:= proc(n) option remember; add(
          (-1)^(n/d+1)*d^6, d=numtheory[divisors](n))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(b(k)*a(n-k), k=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Oct 16 2017
  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(k^5),{k,1,nmax}],{x,0,nmax}],x]
  • PARI
    m=50; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^k^5)) \\ G. C. Greubel, Oct 31 2018
    

Formula

a(n) ~ (5*zeta(7))^(1/14) * 3^(2/7) * exp(zeta(7)^(1/7) * 2^(-9/7) * 3^(-3/7) * 5^(1/7) * 7^(8/7) * n^(6/7)) / (2^(163/252) * 7^(3/7) * sqrt(Pi) * n^(4/7)), where zeta(7) = A013665.

A284992 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1+x^j)^(j^k) in powers of x.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 5, 2, 1, 1, 8, 13, 8, 3, 1, 1, 16, 35, 31, 16, 4, 1, 1, 32, 97, 119, 83, 28, 5, 1, 1, 64, 275, 457, 433, 201, 49, 6, 1, 1, 128, 793, 1763, 2297, 1476, 487, 83, 8, 1, 1, 256, 2315, 6841, 12421, 11113, 4962, 1141, 142, 10, 1, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2017

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,     1,      1,       1,        1, ...
  1,  1,   1,    1,     1,      1,       1,        1, ...
  1,  2,   4,    8,    16,     32,      64,      128, ...
  2,  5,  13,   35,    97,    275,     793,     2315, ...
  2,  8,  31,  119,   457,   1763,    6841,    26699, ...
  3, 16,  83,  433,  2297,  12421,   68393,   382573, ...
  4, 28, 201, 1476, 11113,  85808,  678101,  5466916, ...
  5, 49, 487, 4962, 52049, 561074, 6189117, 69540142, ...
		

Crossrefs

Columns k=0-5 give A000009, A026007, A027998, A248882, A248883, A248884.
Rows (0+1),2-3 give: A000012, A000079, A007689.
Main diagonal gives A270917.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*binomial(i^k, j), j=0..n/i)))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);  # Alois P. Heinz, Oct 16 2017
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
         Sum[b[n - i*j, i - 1, k]*Binomial[i^k, j], {j, 0, n/i}]]];
    A[n_, k_] := b[n, n, k];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 10 2021, after Alois P. Heinz *)

Formula

G.f. of column k: Product_{j>=1} (1+x^j)^(j^k).

A284898 Expansion of Product_{k>=1} 1/(1+x^k)^(k^4) in powers of x.

Original entry on oeis.org

1, -1, -15, -66, -54, 725, 4580, 12739, 3346, -149076, -791226, -2182124, -1656973, 16553206, 100646954, 318795473, 506196578, -818806580, -9148048880, -36415709566, -87180585636, -70923559814, 484810027389, 2992082912770, 9866919438716, 19936695359140
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2017

Keywords

Crossrefs

Cf. A248883.
Product_{k>=1} 1/(1+x^k)^(k^m): A081362 (m=0), A255528 (m=1), A284896 (m=2), A284897 (m=3), this sequence (m=4), A284899 (m=5).

Programs

  • Mathematica
    CoefficientList[Series[Product[1/(1 + x^k)^(k^4) , {k, 40}], {x, 0, 40}], x] (* Indranil Ghosh, Apr 05 2017 *)
  • PARI
    x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^4))) \\ Indranil Ghosh, Apr 05 2017

Formula

a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A284926(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017

A343324 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^(k^4).

Original entry on oeis.org

1, 16, 81, 376, 625, 2592, 2401, 8752, 9801, 20000, 14641, 71928, 28561, 76832, 101250, 196252, 83521, 366768, 130321, 555000, 388962, 468512, 279841, 1859760, 585625, 913952, 1148202, 2132088, 707281, 4050000, 923521, 4307216, 2371842, 2672672, 3001250, 11242800, 1874161, 4170272
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 11 2021

Keywords

Crossrefs

Showing 1-8 of 8 results.