cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A380291 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} (1 + x^k)^(k^2) is the g.f. of A027998.

Original entry on oeis.org

1, 1, 9, 64, 425, 3026, 21672, 157095, 1149289, 8464240, 62683134, 466307865, 3482008904, 26083955002, 195932407939, 1475267031164, 11131100990825, 84140066313620, 637054366975740, 4830417047590165, 36674477204674750, 278779034863684377, 2121418004609211361, 16159262748227985561
Offset: 0

Views

Author

Peter Bala, Jan 19 2025

Keywords

Comments

Given an integer sequence {f(n) : n >= 0} with f(0) = 1, there is a unique power series F(x) with rational coefficients, where F(0) = 1, such that f(n) = [x^n] F(x)^n. F(x) is given by F(x) = series_reversion(x/E(x)), where E(x) = exp(Sum_{n >= 1} f(n)*x^n/n). Furthermore, if the series E(x) has integer coefficients then the series F(x) also has integer coefficients and the sequence {f(n)} satisfies the Gauss congruences: f(n*p^r) == f(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r (by Stanley, Ch. 5, Ex. 5.2(a), p. 72 and the Lagrange inversion formula).
Thus the present sequence satisfies the Gauss congruences. In fact, stronger congruences appear to hold for the present sequence.
We conjecture that a(p) == 1 (mod p^3) for all primes p >= 7 (checked up to p = 61).
More generally, we conjecture that the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 7 and positive integers n and r. Some examples are given below.

Examples

			Examples of supercongruences:
a(7) - a(1) = 157095 - 1 = 2*(7^3)*229 == 0 (mod 7^3)
a(11) - a(1) = 466307865 - 1 = (2^3)*(11^3)*43793 == 0 (mod 11^3)
a(3*7) - a(3) = 278779034863684377 - 64 = (7^4)*43*26891*100413601 == 0 (mod 7^4)
		

References

  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Programs

  • Maple
    with(numtheory):
    s_3 := n-> add((-1)^(n/d+1)*d^3, d in divisors(n)):
    G(x) := series(exp(add(s_3(k)*x^k/k, k = 1..23)), x, 24):
    seq(coeftayl(G(x)^n, x = 0, n), n = 0..23);
  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^k)^(n*k^2), {k, 1, n}], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
    (* or *)
    Table[SeriesCoefficient[Exp[n*Sum[Sum[(-1)^(k/d + 1)*d^3, {d, Divisors[k]}]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)

Formula

a(n) = [x^n] exp(n*Sum_{k >= 1} s_3(k)*x^k/k), where s_3(n) = Sum_{d divides n} (-1)^(n/d+1)*d^3 = A078307(n).
a(n) ~ c * d^n / sqrt(n), where d = 7.7846790125019502578773343468308844201627754275100035492213697757399421948... and c = 0.2484592487737716543953469621097743519172686743284742545545347906986158... - Vaclav Kotesovec, Jul 30 2025

A285224 Indices of primes in A027998.

Original entry on oeis.org

3, 4, 5, 7, 11, 28, 45, 47, 71, 115, 135, 205, 230, 258, 408, 409, 665, 703, 915, 934, 3912, 5031, 5746, 6078, 6391, 7979, 11267, 11296, 14666, 17555, 22073, 23583, 30029, 36150, 51253, 54365, 57557, 68475
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 14 2017

Keywords

Comments

No other terms below 100000.

Examples

			11 is in the sequence because A027998(11) = 13309 is prime.
		

Crossrefs

A304049 Numbers k such that A027998(k) is divisible by k.

Original entry on oeis.org

1, 2, 14, 75, 292, 421, 1841, 3101, 4466, 60605, 87403
Offset: 1

Views

Author

Vaclav Kotesovec, May 05 2018

Keywords

Comments

No other terms below 100000.

Examples

			75 is in the sequence because A027998(75) = 1005156449936335004175 = 13402085999151133389 * 75.
		

Crossrefs

Cf. A027998.

A026007 Expansion of Product_{m>=1} (1 + q^m)^m; number of partitions of n into distinct parts, where n different parts of size n are available.

Original entry on oeis.org

1, 1, 2, 5, 8, 16, 28, 49, 83, 142, 235, 385, 627, 1004, 1599, 2521, 3940, 6111, 9421, 14409, 21916, 33134, 49808, 74484, 110837, 164132, 241960, 355169, 519158, 755894, 1096411, 1584519, 2281926, 3275276, 4685731, 6682699, 9501979, 13471239, 19044780, 26850921, 37756561, 52955699
Offset: 0

Views

Author

Keywords

Comments

In general, for t > 0, if g.f. = Product_{m>=1} (1 + t*q^m)^m then a(n) ~ c^(1/6) * exp(3^(2/3) * c^(1/3) * n^(2/3) / 2) / (3^(2/3) * (t+1)^(1/12) * sqrt(2*Pi) * n^(2/3)), where c = Pi^2*log(t) + log(t)^3 - 6*polylog(3, -1/t). - Vaclav Kotesovec, Jan 04 2016

Examples

			For n = 4, we have 8 partitions
  01: [4]
  02: [4']
  03: [4'']
  04: [4''']
  05: [3, 1]
  06: [3', 1]
  07: [3'', 1]
  08: [2, 2']
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember;
          add((-1)^(n/d+1)*d^2, d=divisors(n))
        end:
    a:= proc(n) option remember;
          `if`(n=0, 1, add(b(k)*a(n-k), k=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    a[n_] := a[n] = 1/n*Sum[Sum[(-1)^(k/d+1)*d^2, {d, Divisors[k]}]*a[n-k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Apr 17 2014, after Vladeta Jovovic *)
    nmax=50; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*x^k/(k*(1-x^k)^2),{k,1,nmax}]],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)
  • PARI
    N=66; q='q+O('q^N);
    gf= prod(n=1,N, (1+q^n)^n );
    Vec(gf)
    /* Joerg Arndt, Oct 06 2012 */

Formula

a(n) = (1/n)*Sum_{k=1..n} A078306(k)*a(n-k). - Vladeta Jovovic, Nov 22 2002
G.f.: Product_{m>=1} (1+x^m)^m. Weighout transform of natural numbers (A000027). Euler transform of A026741. - Franklin T. Adams-Watters, Mar 16 2006
a(n) ~ zeta(3)^(1/6) * exp((3/2)^(4/3) * zeta(3)^(1/3) * n^(2/3)) / (2^(3/4) * 3^(1/3) * sqrt(Pi) * n^(2/3)), where zeta(3) = A002117. - Vaclav Kotesovec, Mar 05 2015

A261049 Expansion of Product_{k>=1} (1+x^k)^(p(k)), where p(k) is the partition function.

Original entry on oeis.org

1, 1, 2, 5, 9, 19, 37, 71, 133, 252, 464, 851, 1547, 2787, 4985, 8862, 15639, 27446, 47909, 83168, 143691, 247109, 423082, 721360, 1225119, 2072762, 3494359, 5870717, 9830702, 16409939, 27309660, 45316753, 74986921, 123748430, 203686778, 334421510, 547735241
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 08 2015

Keywords

Comments

Number of strict multiset partitions of integer partitions of n. Weigh transform of A000041. - Gus Wiseman, Oct 11 2018

Examples

			From _Gus Wiseman_, Oct 11 2018: (Start)
The a(1) = 1 through a(5) = 19 strict multiset partitions:
  {{1}}  {{2}}    {{3}}        {{4}}          {{5}}
         {{1,1}}  {{1,2}}      {{1,3}}        {{1,4}}
                  {{1,1,1}}    {{2,2}}        {{2,3}}
                  {{1},{2}}    {{1,1,2}}      {{1,1,3}}
                  {{1},{1,1}}  {{1},{3}}      {{1,2,2}}
                               {{1,1,1,1}}    {{1},{4}}
                               {{1},{1,2}}    {{2},{3}}
                               {{2},{1,1}}    {{1,1,1,2}}
                               {{1},{1,1,1}}  {{1},{1,3}}
                                              {{1},{2,2}}
                                              {{2},{1,2}}
                                              {{3},{1,1}}
                                              {{1,1,1,1,1}}
                                              {{1},{1,1,2}}
                                              {{1,1},{1,2}}
                                              {{2},{1,1,1}}
                                              {{1},{1,1,1,1}}
                                              {{1,1},{1,1,1}}
                                              {{1},{2},{1,1}}
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(combinat[numbpart](i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    nmax=40; CoefficientList[Series[Product[(1+x^k)^PartitionsP[k],{k,1,nmax}],{x,0,nmax}],x]

A248882 Expansion of Product_{k>=1} (1+x^k)^(k^3).

Original entry on oeis.org

1, 1, 8, 35, 119, 433, 1476, 4962, 16128, 51367, 160105, 490219, 1476420, 4378430, 12805008, 36962779, 105417214, 297265597, 829429279, 2291305897, 6270497702, 17008094490, 45744921052, 122052000601, 323166712109, 849453194355, 2217289285055, 5749149331789
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 05 2015

Keywords

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+x^k)^k^3: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
  • Maple
    b:= proc(n) option remember; add(
          (-1)^(n/d+1)*d^4, d=numtheory[divisors](n))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(b(k)*a(n-k), k=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Oct 16 2017
  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(k^3),{k,1,nmax}],{x,0,nmax}],x]
  • PARI
    x = 'x + O('x^50); Vec(prod(k=1, 50, (1 + x^k)^(k^3))) \\ Indranil Ghosh, Apr 06 2017
    

Formula

a(n) ~ Zeta(5)^(1/10) * 3^(1/5) * exp(2^(-11/5) * 3^(2/5) * 5^(6/5) * Zeta(5)^(1/5) * n^(4/5)) / (2^(71/120) * 5^(2/5)* sqrt(Pi) * n^(3/5)), where Zeta(5) = A013663.
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A284900(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + 4*x^k + x^(2*k))/(k*(1 - x^k)^4)). - Ilya Gutkovskiy, May 30 2018
Euler transform of A309335. - Georg Fischer, Nov 10 2020

A206622 G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^2).

Original entry on oeis.org

1, 2, 10, 36, 118, 376, 1148, 3376, 9654, 26894, 73192, 195188, 510948, 1315048, 3332720, 8326448, 20529526, 49998884, 120379574, 286726340, 676057144, 1578880480, 3654180236, 8385122192, 19085029540, 43103203626, 96630606968, 215105226728, 475608824400
Offset: 0

Views

Author

Paul D. Hanna, Feb 10 2012

Keywords

Comments

Compare g.f. to: Product_{n>0} (1+x^n)/(1-x^n) = exp( Sum_{n>=1} (sigma(2*n) - sigma(n))*x^n/n ) which equals 1/theta_4(x) = 1/(1 + 2*Sum_{n>=1} (-x)^(n^2)).
Convolution of A023871 and A027998. - Vaclav Kotesovec, Aug 19 2015
In general, if g.f. = Product_{k>=1} ((1 + x^k)/(1 - x^k))^(c2*k^2 + c1*k + c0) and c2>0, then a(n) ~ exp(Pi * 2^(5/4) * c2^(1/4) * n^(3/4) / 3 + 7*c1 * Zeta(3) * sqrt(n) / (Pi^2 * sqrt(2*c2)) + (c0*Pi / (2^(5/4) * c2^(1/4)) - 49*c1^2 * Zeta(3)^2 / (2^(5/4) * c2^(5/4) * Pi^5)) * n^(1/4) + 22411 * c1^3 * Zeta(3)^3 / (196 * c2^2 * Pi^8) - 7*c0*c1 * Zeta(3) / (4*c2 * Pi^2) - c2 * Zeta(3) / (4*Pi^2) + c1/12) * Pi^(c1/12) * c2^(1/8 + c0/8 + c1/48) / (A^c1 * 2^(15/8 + 11*c0/8 + 7*c1/48) * n^(5/8 + c0/8 + c1/48)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 08 2017
Let A(x) denote the g.f. and let m be an integer. Define a sequence by u(n) = [x^n] A(x)^(m*n). We conjecture that the supercongruence u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) holds for all positive integers n and r and all primes p >= 5. Cf. A380582. - Peter Bala, Jan 21 2025

Examples

			G.f.: A(x) = 1 + 2*x + 10*x^2 + 36*x^3 + 118*x^4 + 376*x^5 + 1148*x^6 +...
where A(x) = (1+x)/(1-x) * (1+x^2)^4/(1-x^2)^4 * (1+x^3)^9/(1-x^3)^9 *...
Also, A(x) = Euler transform of [2,7,18,28,50,63,98,112,162,175,...]:
A(x) = 1/((1-x)^2*(1-x^2)^7*(1-x^3)^18*(1-x^4)^28*(1-x^5)^50*(1-x^6)^63*...).
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
  • PARI
    {a(n)=polcoeff(prod(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))^(m^2)),n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 3)-sigma(m, 3))/4*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=local(InvEulerGF=x*(2+7*x+12*x^2+7*x^3+2*x^4)/(1-x^2+x*O(x^n))^3);polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^polcoeff(InvEulerGF,k)),n)}
    for(n=0,35,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} (sigma_3(2*n) - sigma_3(n))/4 * x^n/n ), where sigma_3(n) is the sum of cubes of divisors of n (A001158).
The inverse Euler transform has g.f.: x*(2 + 7*x + 12*x^2 + 7*x^3 + 2*x^4)/(1-x^2)^3.
a(n) ~ exp(2^(5/4)*Pi*n^(3/4)/3 - Zeta(3)/(4*Pi^2)) / (2^(15/8) * n^(5/8)), where Zeta(3) = A002117. - Vaclav Kotesovec, Aug 19 2015
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A007331(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 30 2017

A284896 Expansion of Product_{k>=1} 1/(1+x^k)^(k^2) in powers of x.

Original entry on oeis.org

1, -1, -3, -6, 0, 11, 42, 63, 73, -45, -267, -720, -1095, -1239, -66, 2794, 8757, 16017, 22885, 19634, -2359, -61979, -161867, -302190, -421971, -432051, -126712, 690578, 2278273, 4584989, 7269985, 8965464, 7515373, -845659, -19930400, -53474765, -100195759
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2017

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n^2, g(n) = -1. - Seiichi Manyama, Nov 15 2017

Crossrefs

Product_{k>=1} 1/(1+x^k)^(k^m): A081362 (m=0), A255528 (m=1), this sequence (m=2), A284897 (m=3), A284898 (m=4), A284899 (m=5).

Programs

  • Mathematica
    CoefficientList[Series[Product[1/(1 + x^k)^(k^2) , {k, 40}], {x, 0, 40}], x] (* Indranil Ghosh, Apr 05 2017 *)
  • PARI
    x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^2))) \\ Indranil Ghosh, Apr 05 2017

Formula

a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A078307(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017
G.f.: exp(Sum_{k>=1} (-1)^k*x^k*(1 + x^k)/(k*(1 - x^k)^3)). - Ilya Gutkovskiy, May 30 2018

A078307 a(n) = Sum_{d divides n} (-1)^(n/d+1)*d^3.

Original entry on oeis.org

1, 7, 28, 55, 126, 196, 344, 439, 757, 882, 1332, 1540, 2198, 2408, 3528, 3511, 4914, 5299, 6860, 6930, 9632, 9324, 12168, 12292, 15751, 15386, 20440, 18920, 24390, 24696, 29792, 28087, 37296, 34398, 43344, 41635, 50654, 48020, 61544, 55314, 68922, 67424
Offset: 1

Views

Author

Vladeta Jovovic, Nov 22 2002

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add((-1)^(n/d+1)*d^3, d=divisors(n)):
    seq(a(n), n=1..70);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    a[n_] := Sum[(-1)^(n/d+1)*d^3, {d, Divisors[n]}]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Jan 17 2014 *)
    f[p_, e_] := (p^(3*e + 3) - 1)/(p^3 - 1); f[2, e_] := (6*8^e + 1)/7; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 42] (* Amiram Eldar, Oct 27 2022 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d + 1)*d^3); \\ Indranil Ghosh, Apr 05 2017
    
  • Python
    from sympy import divisors
    print([sum((-1)**(n//d + 1)*d**3 for d in divisors(n)) for n in range(1, 51)]) # Indranil Ghosh, Apr 05 2017

Formula

G.f.: Sum_{n >= 1} n^3*x^n/(1+x^n).
Multiplicative with a(2^e) = (6*8^e+1)/7, a(p^e) = (p^(3*e+3)-1)/(p^3-1), p > 2.
L.g.f.: log(Product_{k>=1} (1 + x^k)^(k^2)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 12 2018
Sum_{k=1..n} a(k) ~ c * n^4, where c = 7*Pi^4/2880 = 0.236758... . - Amiram Eldar, Oct 27 2022

A027999 Expansion of Product(1+q^m)^(m(m-1)/2); m=1..inf.

Original entry on oeis.org

1, 0, 1, 3, 6, 13, 24, 49, 91, 181, 334, 632, 1163, 2138, 3880, 7006, 12531, 22279, 39369, 69078, 120597, 209282, 361405, 620829, 1061687, 1807014, 3062642, 5168784, 8688820, 14549659, 24274226, 40353748, 66854518, 110391391, 181695436, 298129605, 487706902
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(binomial(i, 2), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[Binomial[i, 2], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 13 2014, after Alois P. Heinz *)

Formula

a(n) ~ 7^(1/8) / (2^(47/24) * 15^(1/8) * n^(5/8)) * exp(-2025 * Zeta(3)^3 / (98*Pi^8) - 135*(15/7)^(1/4) * Zeta(3)^2 / (28*Pi^5) * n^(1/4) - 3*sqrt(15/7) * Zeta(3) / (2*Pi^2) * sqrt(n) + 2*(7/15)^(1/4) * Pi/3 * n^(3/4)), where Zeta(3) = A002117. - Vaclav Kotesovec, May 27 2015
Showing 1-10 of 37 results. Next