cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A333145 Number of unimodal negated permutations of the multiset of prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 4, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 4, 1, 2, 2, 4, 1, 3, 1, 2, 3, 2, 2, 4, 1, 2, 1, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 09 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also permutations of the multiset of prime indices of n avoiding the patterns (1,2,1), (1,3,2), and (2,3,1).
Also the number divisors of n not divisible by the least prime factor of n. The other divisors are counted by A069157. - Gus Wiseman, Apr 12 2022

Examples

			The a(n) permutations for n = 2, 6, 18, 30, 90, 162, 210, 450:
  (1)  (12)  (122)  (123)  (1223)  (12222)  (1234)  (12233)
       (21)  (212)  (213)  (2123)  (21222)  (2134)  (21233)
             (221)  (312)  (2213)  (22122)  (3124)  (22133)
                    (321)  (3122)  (22212)  (3214)  (31223)
                           (3212)  (22221)  (4123)  (32123)
                           (3221)           (4213)  (32213)
                                            (4312)  (33122)
                                            (4321)  (33212)
                                                    (33221)
		

Crossrefs

Dominated by A008480.
The complementary divisors are counted by A069157.
The non-negated version is A332288.
A more interesting version is A332741.
The complement is counted by A333146.
A001523 counts unimodal compositions.
A007052 counts unimodal normal sequences.
A028233 gives the highest power of the least prime factor, quotient A028234.
A332578 counts compositions whose negation is unimodal.
A332638 counts partitions with unimodal negated run-lengths.
A332642 lists numbers with non-unimodal negated unsorted prime signature.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Permutations[primeMS[n]],unimodQ[-#]&]],{n,30}]

Formula

a(n) + A333146(n) = A008480(n).
a(n) = A000005(A028234(n)). - Gus Wiseman, Apr 14 2022
a(n) = A000005(n) - A069157(n). - Gus Wiseman, Apr 14 2022

A336650 a(n) = p^e, where p is the smallest odd prime factor of n, and e is its exponent, with a(n) = 1 when n is a power of two.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 3, 1, 17, 9, 19, 5, 3, 11, 23, 3, 25, 13, 27, 7, 29, 3, 31, 1, 3, 17, 5, 9, 37, 19, 3, 5, 41, 3, 43, 11, 9, 23, 47, 3, 49, 25, 3, 13, 53, 27, 5, 7, 3, 29, 59, 3, 61, 31, 9, 1, 5, 3, 67, 17, 3, 5, 71, 9, 73, 37, 3, 19, 7, 3, 79, 5, 81, 41, 83, 3, 5, 43, 3, 11, 89, 9, 7, 23, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2020

Keywords

Crossrefs

Programs

  • PARI
    A336650(n) = if(!bitand(n,n-1),1,my(f=factor(n>>valuation(n,2))); f[1, 1]^f[1, 2]);

Formula

a(n) = A028233(A000265(n)).

A216972 a(4n+2) = 2, otherwise a(n) = n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 2, 7, 8, 9, 2, 11, 12, 13, 2, 15, 16, 17, 2, 19, 20, 21, 2, 23, 24, 25, 2, 27, 28, 29, 2, 31, 32, 33, 2, 35, 36, 37, 2, 39, 40, 41, 2, 43, 44, 45, 2, 47, 48, 49, 2, 51, 52, 53, 2, 55, 56, 57, 2, 59, 60, 61, 2, 63, 64, 65, 2, 67, 68, 69, 2
Offset: 0

Views

Author

Paul Curtz, Sep 21 2012

Keywords

Comments

For n>0, a(n) is the denominator of A214282(n)/(-A214283(n+1)):
1/1, 1/2, 1/3, 3/4, 3/5, 1/2, 3/7, 5/8, 5/9, ...
For n>0, a(n) is the denominator of A214283(n)/A214283(n+1):
0/1, 1/2, 2/3, 3/4, 2/5, 1/2, 4/7, 5/8, 4/9, ...
a(n), first and second differences:
0, 1, 2, 3, 4, 5, 2, 7, 8, 9, 2, 11, 12, ...
1, 1, 1, 1, 1, -3, 5, 1, 1, -7, 9, 1, 1, ...
0, 0, 0, 0, -4, 8, -4, 0, -8, 16, -8, 0, -12, ...

Crossrefs

Programs

  • Magma
    [n mod 4 eq 2 select 2 else n: n in [0..70]]; // Bruno Berselli, Sep 26 2012
    
  • Mathematica
    a[n_] := If[Mod[n, 4] == 2, 2, n]; Table[a[n], {n, 0, 81}] (* Jean-François Alcover, Sep 25 2012 *)
    LinearRecurrence[{0,0,0,2,0,0,0,-1},{0,1,2,3,4,5,2,7},80] (* Harvey P. Dale, Nov 06 2017 *)
  • Maxima
    makelist(expand(2+(4-(1+(-1)^n)*(1-%i^n))*(n-2)/4), n, 0, 70); /* Bruno Berselli, Sep 26 2012 */
    
  • Python
    def A216972(n): return 2 if n&3==2 else n # Chai Wah Wu, Jan 31 2024

Formula

a(n) = 2*a(n-4) - a(n-8).
a(n+4) - a(n) = 4*A152822(n).
a(2n) + a(2n+1) = |A141124(n)|.
a(4n) + a(4n+1) + a(4n+2) + a(4n+3) = 6*A005408(n) = A017593(n).
G.f.: (x+2*x^2+3*x^3+4*x^4+3*x^5-2*x^6+x^7) / (1-2*x^4+x^8). - Jean-François Alcover, Sep 25 2012
a(n) = 2+(4-(1+(-1)^n)*(1-i^n))*(n-2)/4, where i=sqrt(-1). - Bruno Berselli, Sep 26 2012
a(2n) = 2*|A009531(n)|, a(2n+1) = 2n+1. - Bruno Berselli, Sep 27 2012

A304181 If n = Product (p_j^k_j) then a(n) = min{p_j}^min{k_j}.

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 8, 9, 2, 11, 2, 13, 2, 3, 16, 17, 2, 19, 2, 3, 2, 23, 2, 25, 2, 27, 2, 29, 2, 31, 32, 3, 2, 5, 4, 37, 2, 3, 2, 41, 2, 43, 2, 3, 2, 47, 2, 49, 2, 3, 2, 53, 2, 5, 2, 3, 2, 59, 2, 61, 2, 3, 64, 5, 2, 67, 2, 3, 2, 71, 4, 73, 2, 3, 2, 7, 2, 79, 2, 81, 2, 83, 2, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2018

Keywords

Examples

			a(72) = 4 because 72 = 2^3*3^2, min{2,3} = 2, min{3,2} = 2 and 2^2 = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[(FactorInteger[n][[1, 1]])^(Min @@ Last /@ FactorInteger[n]), {n, 85}]

Formula

a(n) = A020639(n)^A051904(n).
a(p^k) = p^k where p is a prime.
a(A005117(k)) = A073481(k).

A323130 a(1) = 1, and for any n > 1, let p be the least prime factor of n, and e be its exponent, then a(n) = p^a(e).

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 8, 9, 2, 11, 4, 13, 2, 3, 16, 17, 2, 19, 4, 3, 2, 23, 8, 25, 2, 27, 4, 29, 2, 31, 32, 3, 2, 5, 4, 37, 2, 3, 8, 41, 2, 43, 4, 9, 2, 47, 16, 49, 2, 3, 4, 53, 2, 5, 8, 3, 2, 59, 4, 61, 2, 9, 4, 5, 2, 67, 4, 3, 2, 71, 8, 73, 2, 3, 4, 7, 2, 79
Offset: 1

Views

Author

Rémy Sigrist, Jan 05 2019

Keywords

Comments

This sequence is a recursive variant of A028233.
All terms belong to A164336.

Examples

			a(320) = a(2^6 * 5) = 2^a(6) = 2^a(2*3) = 2^2 = 4.
		

Crossrefs

See A323129 for the variant involving the greatest prime factor.

Programs

  • Mathematica
    Nest[Append[#, First@ FactorInteger[Length[#] + 1] /. {p_, e_} :> p^#[[e]] ] &, {1}, 78] (* Michael De Vlieger, Jan 07 2019 *)
  • PARI
    a(n) = if (n==1, 1, my (f=factor(n)); f[1,1]^a(f[1,2]))

Formula

a(n) <= n with equality iff n belong to A164336.
a(n) = A020639(n)^a(A067029(n)) for any n > 1.

A085234 (Greatest power of smallest prime factor of n) < square root(n).

Original entry on oeis.org

6, 10, 14, 15, 18, 20, 21, 22, 26, 28, 30, 33, 34, 35, 36, 38, 39, 42, 44, 46, 50, 51, 52, 54, 55, 57, 58, 60, 62, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 114, 115
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 22 2003

Keywords

Comments

A028233(a(n))^2 < a(n);
a(n)=A085232(n) for n<69: a(69)=120, A085232(69)=122=a(70).

Programs

  • Maple
    isA085234 := proc(n)
        if A028233(n)^2 < n then
            true;
        else
            false;
        end if;
    end proc:
    for n from 1 to 115 do
        if isA085234(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Jul 09 2016
  • Mathematica
    okQ[n_] := Power @@ FactorInteger[n][[1]] < Sqrt[n]; Select[Range[120], okQ] (* Jean-François Alcover, Feb 13 2018 *)
Previous Showing 21-26 of 26 results.