A294356
E.g.f.: Product_{k>0} (1+x^k)^(-1/k).
Original entry on oeis.org
1, -1, 1, -5, 23, -119, 619, -4759, 48145, -476657, 4249961, -48286061, 691331431, -9132207655, 117900772963, -2025161870159, 37607411624609, -628236985455329, 10768798391659345, -215626810984559317, 4751529623277906871, -105427459848063440471
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[1/(1+x^k)^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 29 2017 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1/(1+x^k)^(1/k))))
A295792
Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(1/k).
Original entry on oeis.org
1, 2, 6, 28, 152, 1008, 7936, 70208, 689664, 7618816, 92013824, 1202362368, 17053410304, 258928934912, 4197838491648, 72840915607552, 1334630802489344, 25799982480556032, 527187369241870336, 11292834065764450304, 253498950169144590336, 5965951790211865772032, 146341359815078034538496
Offset: 0
-
a:=series(mul(((1+x^k)/(1-x^k))^(1/k),k=1..100),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 27 2019
-
nmax = 22; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
A330352
Expansion of e.g.f. -Sum_{k>=1} log(1 - log(1 + x)^k) / k.
Original entry on oeis.org
1, 1, 0, 10, -68, 818, -9782, 130730, -1835752, 27408672, -438578616, 7697802264, -150743052528, 3293454634416, -78787556904864, 2014008113598432, -54001416897306240, 1504891127666322048, -43527807706621236480, 1311515508480252542208
Offset: 1
-
nmax = 20; CoefficientList[Series[-Sum[Log[1 - Log[1 + x]^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS1[n, k] (k - 1)! DivisorSigma[0, k], {k, 1, n}], {n, 1, 20}]
A356336
Expansion of e.g.f. ( Product_{k>0} 1/(1-x^k)^(1/k) )^(1/(1-x)).
Original entry on oeis.org
1, 1, 5, 29, 219, 1949, 20587, 245237, 3289577, 48670973, 788572541, 13849348105, 262283664739, 5317530185889, 114939490137235, 2636612228192969, 63955437488072593, 1634890446576454297, 43920715897460109205, 1236660724225711901749, 36412086992371220561771
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace((1/prod(k=1, N, (1-x^k)^(1/k)))^(1/(1-x))))
-
a356297(n) = n!*sum(k=1, n, sigma(k, 0)/k);
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a356297(j)*binomial(i-1, j-1)*v[i-j+1])); v;
A299034
a(n) = n! * [x^n] Product_{k>=1} 1/(1 - x^k)^(n/k).
Original entry on oeis.org
1, 1, 8, 93, 1544, 32615, 843264, 25739539, 906373376, 36163950849, 1612483625600, 79458277381901, 4288069172500992, 251520785449249927, 15932801526165085184, 1084003570689331039875, 78835487923639854792704, 6103175938145968656408641, 501114006272655771562911744
Offset: 0
The table of coefficients of x^k in expansion of e.g.f. Product_{k>=1} 1/(1 - x^k)^(n/k) begins:
n = 0: (1), 0, 0, 0, 0, 0, 0, ...
n = 1: 1, (1), 3, 11, 59, 339, 2629, ...
n = 2: 1, 2, (8), 40, 260, 1928, 17056, ...
n = 3: 1, 3, 15, (93), 711, 6237, 62901, ...
n = 4: 1, 4, 24, 176, (1544), 15456, 174784, ...
n = 5: 1, 5, 35, 295, 2915, (32615), 407725, ...
n = 6: 1, 6, 48, 456, 5004, 61704, (843264), ...
-
Table[n! SeriesCoefficient[Product[1/(1 - x^k)^(n/k), {k, 1, n}], {x, 0, n}], {n, 0, 18}]
A303970
Expansion of e.g.f. Product_{k>=1} 1/(1 - x^k)^H(k), where H(k) is the k-th harmonic number.
Original entry on oeis.org
1, 1, 5, 26, 199, 1599, 17053, 186276, 2460057, 34226729, 537669401, 8925732958, 163894885735, 3151342927823, 65678713377873, 1437541042260704, 33545591623360881, 819213454875992337, 21170268780829522093, 570252657062810041954, 16139888268919495959911, 475126022355752304699455, 14608848314409377281498213
Offset: 0
-
H:= proc(n) option remember; `if`(n=0, 0, 1/n+H(n-1)) end:
b:= proc(n) option remember; `if`(n=0, 1, add(add(d*
H(d), d=numtheory[divisors](j))*b(n-j), j=1..n)/n)
end:
a:= n-> n!*b(n):
seq(a(n), n=0..20); # Alois P. Heinz, May 03 2018
-
nmax = 22; CoefficientList[Series[Product[1/(1 - x^k)^HarmonicNumber[k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d HarmonicNumber[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]
A305127
Expansion of e.g.f. Product_{k>=1} 1/(1 - x^k)^(sigma(k)/k), where sigma(k) is the sum of the divisors of k.
Original entry on oeis.org
1, 1, 5, 23, 179, 1279, 13699, 135085, 1764377, 22527521, 344625461, 5283739471, 94562354875, 1685808248383, 33947023942259, 694786150879829, 15613612524749489, 357353282848083265, 8880505496901812197, 224851013929747732231, 6106205671049245677251, 169523515381173773551871
Offset: 0
-
with(numtheory): a := proc(n) option remember; `if`(n = 0, 1, add(add(sigma(d), d = divisors(j))*a(n-j), j = 1..n)/n) end proc; seq(n!*a(n), n = 0..20); # Vaclav Kotesovec, Sep 04 2018
-
nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[1, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[Exp[Sum[Sum[x^(j k)/(j k (1 - x^(j k))), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d DivisorSigma[-1, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 21}]
nmax = 21; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[1, k]/k, j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2018 *)
A318695
Expansion of e.g.f. Product_{i>=1, j>=1} 1/(1 - x^(i*j))^(1/(i*j)).
Original entry on oeis.org
1, 1, 4, 16, 106, 658, 6088, 51952, 592828, 6577948, 88213744, 1173121024, 18663391096, 289030343704, 5157010548064, 92428084599232, 1848308567352592, 37038307949425168, 822602470902709312, 18285742807660340992, 444405771941314880416, 10883864256927386369056, 286778106663948874858624
Offset: 0
-
seq(n!*coeff(series(mul(1/(1-x^k)^(tau(k)/k),k=1..100),x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 09 2019
-
nmax = 22; CoefficientList[Series[Product[Product[1/(1 - x^(i j))^(1/(i j)), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[0, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Exp[Sum[Sum[DivisorSigma[0, d], {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]
A318913
Expansion of e.g.f. Product_{k>=1} 1/(1 - x^prime(k))^(1/prime(k)).
Original entry on oeis.org
1, 0, 1, 2, 9, 44, 385, 1854, 18193, 153656, 1924641, 17123930, 276117721, 2880135972, 51150361249, 738748900694, 11608748988705, 198747251005424, 4029150617813953, 67937635488741426, 1607525018948543401, 32739373317847964060, 757174325538283357761, 16444280000832495199982
Offset: 0
-
seq(n!*coeff(series(mul(1/(1-x^ithprime(k))^(1/ithprime(k)),k=1..100),x=0,24),x,n),n=0..23); # Paolo P. Lava, Jan 09 2019
-
nmax = 23; CoefficientList[Series[Product[1/(1 - x^Prime[k])^(1/Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Exp[Sum[PrimeNu[k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = (n - 1)! Sum[PrimeNu[k] a[n - k]/(n - k)!, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-isprime(k)*x^k)^(1/k)))) \\ Seiichi Manyama, Feb 28 2022
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, omega(k)*x^k/k)))) \\ Seiichi Manyama, Feb 28 2022
A151954
Expansion of Product_{k>0} (1-k^2*x^k)^(-1/k).
Original entry on oeis.org
1, 1, 3, 6, 16, 27, 79, 126, 331, 632, 1436, 2509, 6800, 11218, 26044, 51958, 114941, 205183, 502228, 875545, 2027193, 3963938, 8389190, 15504996, 37555290, 66502859, 145809046, 292860564, 621638120, 1156065731, 2701045579
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[(1-k^2*x^k)^(-1/k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 05 2017 *)
Comments