A028685
Galois numbers for p=23; order of group AGL(n,23).
Original entry on oeis.org
1, 506, 141331872, 20920469730667584, 1638296742744745305180456960, 67868907839960050279986415163868117749760, 1487321615877089920298398794877451264100990832314711736320
Offset: 0
-
FoldList[ #1*23^#2 (23^#2-1)&, 1, Range[ 20 ] ]
a[n_] := 23^n * Product[23^n - 23^k, {k, 0, n-1}]; Array[a, 7, 0] (* Amiram Eldar, Jul 12 2025 *)
-
a(n) = 23^n * prod(k = 0, n-1, 23^n - 23^k); \\ Amiram Eldar, Jul 12 2025
A203305
Vandermonde determinant of the first n terms of (1,3,7,15,31,...).
Original entry on oeis.org
1, 2, 48, 64512, 20808990720, 6658450862270054400, 8590449816558320728896700416000, 180165778137909187135292776823951671626301440000, 246665746050863452218796304775365273357060390005370386894553088000000
Offset: 1
-
[1] cat [(&*[(&*[2^(k+1) - 2^j: j in [1..k]]): k in [1..n-1]]): n in [2..15]]; // G. C. Greubel, Aug 30 2023
-
(* First program *)
f[j_]:= 2^j - 1; z = 15;
v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
Table[v[n], {n,z}] (* A203305 *)
Table[v[n+1]/v[n], {n,z}] (* A028365 *)
%/2 (* A203307 *)
(* Second program *)
Table[(-1)^n * 2^(n*(n+1)*(2*n+1)/6 - 1) / QPochhammer[2, 2, n] * Product[QPochhammer[1/2^k, 2, k], {k, 2, n}], {n, 10}] (* Vaclav Kotesovec, Feb 18 2021 *)
-
[product(product(2^k - 2^j for j in range(1,k)) for k in range(2,n+1)) for n in range(1,16)] # G. C. Greubel, Aug 30 2023
A362596
Number of parking functions of size n avoiding the patterns 213 and 321.
Original entry on oeis.org
1, 1, 3, 13, 60, 275, 1238, 5480, 23922, 103267, 441798, 1876366, 7921488, 33275758, 139194812, 580180598, 2410827422, 9990993443, 41308185542, 170439003998, 701953309592, 2886284314298, 11850433719572, 48591008205608, 199002198798980, 814117064956430
Offset: 0
For n=3 the a(3)=13 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{1},{2}; {3},{1,2},{}.
-
a(n)=if(n==0, 1, (n^2 - 3*n + 4)*binomial(2*n,n)/(4*(n+1)) + 4^n/8) \\ Andrew Howroyd, Apr 27 2023
-
from math import comb
def A362596(n): return ((n*(n-3)+4)*comb(n<<1,n)//(n+1)>>2)+(1<<(n<<1)-3) if n>1 else 1 # Chai Wah Wu, Apr 27 2023
A362597
Number of parking functions of size n avoiding the patterns 213 and 312.
Original entry on oeis.org
1, 1, 3, 12, 54, 259, 1293, 6634, 34716, 184389, 990711, 5372088, 29347794, 161317671, 891313569, 4946324886, 27552980088, 153982124809, 862997075691, 4848839608228, 27304369787694, 154059320699211, 870796075968693, 4929937918315522, 27950989413184404
Offset: 0
For n=3 the a(3)=12 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{2},{1}.
-
A362597 := proc(n)
if n = 0 then
1;
else
add(add(binomial(n - 1, i)*(k + 1)*binomial(2*n - 2 - k, n - 1 - k)/n,i=0..k),k=0..n-1) ;
end if;
end proc:
seq(A362597(n),n=0..60) ; # R. J. Mathar, Jan 11 2024
-
a(n)={0^n + sum(k=0, n-1, sum(i=0, k, binomial(n - 1, i)*(k + 1)*binomial(2*n - 2 - k, n - 1 - k)/n))} \\ Andrew Howroyd, Apr 27 2023
A203307
a(n) = v(n+1)/(2*v(n)), where v = A203305.
Original entry on oeis.org
1, 12, 672, 161280, 159989760, 645078712320, 10486399547473920, 684552162459097497600, 179100751368498596492083200, 187617350297573441752474740326400, 786539962489104046627462744981792358400
Offset: 1
-
[(&*[2^(n+1) - 2^(j+1): j in [0..n-1]])/2: n in [1..20]]; // G. C. Greubel, Aug 31 2023
-
(* First program *)
f[j_]:= 2^j - 1; z = 15;
v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
Table[v[n], {n,z}] (* A203305 *)
Table[v[n+1]/v[n], {n,z}] (* A028365 *)
%/2 (* A203307 *)
(* Second program *)
Table[(-1)^n*2^Binomial[n+1,2]*QPochhammer[2,2,n]/2, {n,20}] (* G. C. Greubel, Aug 31 2023 *)
-
[product(2^(n+1) - 2^(k+1) for k in range(n))/2 for n in range(1,21)] # G. C. Greubel, Aug 31 2023
A377642
a(n) = (1/(n-1)!) * Product_{i=1..n-1} (2^n-2^i).
Original entry on oeis.org
1, 2, 12, 224, 13440, 2666496, 1791885312, 4161269661696, 33955960439439360, 987107315743488737280, 103404624282172311371513856, 39408968779516596852827017445376, 55084280201257118417007491904448757760, 284322478318511376197290687371005495020093440
Offset: 1
Appears to be main diagonal of
A270882.
-
Table[Product[2^n - 2^i, {i, 1, n - 1}]/Factorial[n - 1], {n, 1, 20}]
-
a(n)=prod(i=1, n-1, 2^n-2^i)/(n-1)! \\ Andrew Howroyd, Nov 10 2024
Comments