cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A091435 Array T(n,k) = n*(n+k), read by antidiagonals.

Original entry on oeis.org

0, 1, 0, 4, 2, 0, 9, 6, 3, 0, 16, 12, 8, 4, 0, 25, 20, 15, 10, 5, 0, 36, 30, 24, 18, 12, 6, 0, 49, 42, 35, 28, 21, 14, 7, 0, 64, 56, 48, 40, 32, 24, 16, 8, 0, 81, 72, 63, 54, 45, 36, 27, 18, 9, 0, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0, 121, 110, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0
Offset: 0

Views

Author

Ross La Haye, Mar 02 2004

Keywords

Examples

			Table begins
   0;
   1,  0;
   4,  2,  0;
   9,  6,  3,  0;
  16, 12,  8,  4,  0;
  25, 20, 15, 10,  5,  0;
  36, 30, 24, 18, 12,  6,  0;
  ...
a(5,3) = 40 because 5 * (5 + 3) = 5 * 8 = 40.
		

Crossrefs

Columns: a(n, 0) = A000290(n), a(n, 1) = A002378(n), a(n, 2) = A005563(n), a(n, 3) = A028552(n), a(n, 4) = A028347(n+2), a(n, 5) = A028557(n), a(n, 6) = A028560(n), a(n, 7) = A028563(n), a(n, 8) = A028566(n). Diagonals: a(n, n-4) = A054000(n-1), a(n, n-3) = A014107(n), a(n, n-2) = A046092(n-1), a(n, n-1) = A000384(n), a(n, n) = A001105(n), a(n, n+1) = A014105(n), a(n, n+2) = A046092(n), a(n, n+3) = A014106(n), a(n, n+4) = A054000(n+1), a(n, n+5) = A033537(n). Also note that the sums of the antidiagonals = A002411.

Programs

  • GAP
    Flat(List([0..11],j->List([0..j],i->j*(j-i)))); # Muniru A Asiru, Sep 11 2018
  • Maple
    seq(seq((j-i)*j,i=0..j),j=0..14);
  • Mathematica
    Table[# (# + k) &[m - k], {m, 0, 11}, {k, 0, m}] // Flatten (* Michael De Vlieger, Oct 15 2018 *)

Formula

G.f.: x*(1+x-2*x^2*y)/((1-x*y)^2*(1-x)^3). - Vladeta Jovovic, Mar 05 2004

Extensions

More terms from Emeric Deutsch, Mar 15 2004

A132773 a(n) = n*(n + 31).

Original entry on oeis.org

0, 32, 66, 102, 140, 180, 222, 266, 312, 360, 410, 462, 516, 572, 630, 690, 752, 816, 882, 950, 1020, 1092, 1166, 1242, 1320, 1400, 1482, 1566, 1652, 1740, 1830, 1922, 2016, 2112, 2210, 2310, 2412, 2516, 2622, 2730, 2840, 2952, 3066, 3182, 3300, 3420, 3542, 3666
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

G.f.: 2*x*(-16+15*x)/(-1+x)^3. - R. J. Mathar, Nov 14 2007
a(n) = 2*A132758(n). - R. J. Mathar, Jul 22 2009
a(n) = 2*n + a(n-1) + 30, with n > 0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(31)/31 = A001008(31)/A102928(31) = 290774257297357/2238255069850800, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/31 - 7313175618421/319750724264400. (End)
From Elmo R. Oliveira, Dec 13 2024: (Start)
E.g.f.: exp(x)*x*(32 + x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A380149 Characteristic polynomial of the tesseract graph: a(n) = n^6*(n^2-16)*(n^2-4)^4.

Original entry on oeis.org

0, -1215, 0, -3189375, 0, 27348890625, 978447237120, 15920336210625, 163074539520000, 1214314872035265, 7134511104000000, 34856907746165505, 146828238520320000, 547377978676010625, 1841813423998894080, 5678883183381890625, 16238028554439229440, 43474602051830210625, 109846357522513920000
Offset: 0

Views

Author

DarĂ­o Clavijo, Jan 13 2025

Keywords

Comments

Given that the eigenvalues of the adjacency matrix of the tesseract graph are: {4,2,0,-2,-4} and their multiplicities are defined by binomial(4,k) for k = 0..4 which results in {1,4,6,4,1}, and the characteristic polynomial is given by P(x) = Prod_{k=1..j} (x-lambda_k)^m_k with j=5, substitute the eigenvalues and their multiplicities as:
k | eigenvalue(lambda_k) | multiplicity(m_k) | term
---+----------------------+-------------------+---------
1 | 4 | 1 | (x-4)^1
2 | 2 | 4 | (x-2)^4
3 | 0 | 6 | (x)^6
4 | -2 | 4 | (x+2)^4
5 | -4 | 1 | (x+4)^1
This results in the characteristic polynomial:
P(x) = (x-4) * (x-2)^4 * (x)^6 * (x+2)^4 * (x+4).
Also all terms are a(n) = 0 mod 5.

Crossrefs

Programs

  • Mathematica
    A380149[n_] := n^6*(n^2 - 16)*(n^2 - 4)^4; Array[A380149, 20, 0] (* Paolo Xausa, Jan 21 2025 *)
  • Python
    a = lambda n: (n**6)*(n**2-16)*(n**2-4)**4
    print([a(n) for n in range(0,19)])

Formula

a(n) = -4096*n^6 + 4352*n^8 - 1792*n^10 + 352*n^12 - 32*n^14 + n^16.

A382310 Array read by ascending antidiagonals: A(n,m) is the squared distance between the roots of the 2nd degree equations z^2 +- n*z + m = 0 on the complex plane.

Original entry on oeis.org

0, 1, 4, 4, 3, 8, 9, 0, 7, 12, 16, 5, 4, 11, 16, 25, 12, 1, 8, 15, 20, 36, 21, 8, 3, 12, 19, 24, 49, 32, 17, 4, 7, 16, 23, 28, 64, 45, 28, 13, 0, 11, 20, 27, 32, 81, 60, 41, 24, 9, 4, 15, 24, 31, 36, 100, 77, 56, 37, 20, 5, 8, 19, 28, 35, 40, 121, 96, 73, 52, 33, 16, 1, 12, 23, 32, 39, 44
Offset: 0

Views

Author

Stefano Spezia, Mar 21 2025

Keywords

Examples

			The array begins as:
   0,  4,  8, 12, 16, 20, 24, 28, 32, 36, 40, 44, ...
   1,  3,  7, 11, 15, 19, 23, 27, 31, 35, 39, 43, ...
   4,  0,  4,  8, 12, 16, 20, 24, 28, 32, 36, 40, ...
   9,  5,  1,  3,  7, 11, 15, 19, 23, 27, 31, 35, ...
  16, 12,  8,  4,  0,  4,  8, 12, 16, 20, 24, 28, ...
  25, 21, 17, 13,  9,  5,  1,  3,  7, 11, 15, 19, ...
  ...
A(2,0) = 4 since z^2 - 2*z = 0 and z^2 + 2*z = 0 have respectively roots 0, 2, and -2, 0 with squared distance equal to 4;
A(1,2) = 7 since z^2 - z + 2 = 0 and z^2 + z + 2 = 0 have respectively roots (1 +- i*sqrt(7))/2 and (-1 +- i*sqrt(7))/2 with squared distance equal to 7, where i denotes the imaginary unit.
		

Crossrefs

Cf. A000290 (m=0), A008586 (n=0), A028347, A028566, A028884, A131098, A134594, A145917, A382311 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,m_]:=Abs[n^2-4m]; Table[A[n-m,m],{n,0,11},{m,0,n}]//Flatten

Formula

A(n,m) = abs(n^2 - 4*m).
A(n,n) = A028347(n-2) for n > 3.
A(n,1) = A028347(n) for n > 1.
A(n,2) = A028884(n-3) for n > 2.
A(n,4) = A028566(n-4) for n > 3.
A(n,5) = A134594(n-5) for n > 4.
A(1,n) = A131098(n+1).
Previous Showing 21-24 of 24 results.