A091435
Array T(n,k) = n*(n+k), read by antidiagonals.
Original entry on oeis.org
0, 1, 0, 4, 2, 0, 9, 6, 3, 0, 16, 12, 8, 4, 0, 25, 20, 15, 10, 5, 0, 36, 30, 24, 18, 12, 6, 0, 49, 42, 35, 28, 21, 14, 7, 0, 64, 56, 48, 40, 32, 24, 16, 8, 0, 81, 72, 63, 54, 45, 36, 27, 18, 9, 0, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0, 121, 110, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0
Offset: 0
Table begins
0;
1, 0;
4, 2, 0;
9, 6, 3, 0;
16, 12, 8, 4, 0;
25, 20, 15, 10, 5, 0;
36, 30, 24, 18, 12, 6, 0;
...
a(5,3) = 40 because 5 * (5 + 3) = 5 * 8 = 40.
Columns: a(n, 0) =
A000290(n), a(n, 1) =
A002378(n), a(n, 2) =
A005563(n), a(n, 3) =
A028552(n), a(n, 4) =
A028347(n+2), a(n, 5) =
A028557(n), a(n, 6) =
A028560(n), a(n, 7) =
A028563(n), a(n, 8) =
A028566(n). Diagonals: a(n, n-4) =
A054000(n-1), a(n, n-3) =
A014107(n), a(n, n-2) =
A046092(n-1), a(n, n-1) =
A000384(n), a(n, n) =
A001105(n), a(n, n+1) =
A014105(n), a(n, n+2) =
A046092(n), a(n, n+3) =
A014106(n), a(n, n+4) =
A054000(n+1), a(n, n+5) =
A033537(n). Also note that the sums of the antidiagonals =
A002411.
-
Flat(List([0..11],j->List([0..j],i->j*(j-i)))); # Muniru A Asiru, Sep 11 2018
-
seq(seq((j-i)*j,i=0..j),j=0..14);
-
Table[# (# + k) &[m - k], {m, 0, 11}, {k, 0, m}] // Flatten (* Michael De Vlieger, Oct 15 2018 *)
A132773
a(n) = n*(n + 31).
Original entry on oeis.org
0, 32, 66, 102, 140, 180, 222, 266, 312, 360, 410, 462, 516, 572, 630, 690, 752, 816, 882, 950, 1020, 1092, 1166, 1242, 1320, 1400, 1482, 1566, 1652, 1740, 1830, 1922, 2016, 2112, 2210, 2310, 2412, 2516, 2622, 2730, 2840, 2952, 3066, 3182, 3300, 3420, 3542, 3666
Offset: 0
A380149
Characteristic polynomial of the tesseract graph: a(n) = n^6*(n^2-16)*(n^2-4)^4.
Original entry on oeis.org
0, -1215, 0, -3189375, 0, 27348890625, 978447237120, 15920336210625, 163074539520000, 1214314872035265, 7134511104000000, 34856907746165505, 146828238520320000, 547377978676010625, 1841813423998894080, 5678883183381890625, 16238028554439229440, 43474602051830210625, 109846357522513920000
Offset: 0
-
A380149[n_] := n^6*(n^2 - 16)*(n^2 - 4)^4; Array[A380149, 20, 0] (* Paolo Xausa, Jan 21 2025 *)
-
a = lambda n: (n**6)*(n**2-16)*(n**2-4)**4
print([a(n) for n in range(0,19)])
A382310
Array read by ascending antidiagonals: A(n,m) is the squared distance between the roots of the 2nd degree equations z^2 +- n*z + m = 0 on the complex plane.
Original entry on oeis.org
0, 1, 4, 4, 3, 8, 9, 0, 7, 12, 16, 5, 4, 11, 16, 25, 12, 1, 8, 15, 20, 36, 21, 8, 3, 12, 19, 24, 49, 32, 17, 4, 7, 16, 23, 28, 64, 45, 28, 13, 0, 11, 20, 27, 32, 81, 60, 41, 24, 9, 4, 15, 24, 31, 36, 100, 77, 56, 37, 20, 5, 8, 19, 28, 35, 40, 121, 96, 73, 52, 33, 16, 1, 12, 23, 32, 39, 44
Offset: 0
The array begins as:
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, ...
1, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, ...
4, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...
9, 5, 1, 3, 7, 11, 15, 19, 23, 27, 31, 35, ...
16, 12, 8, 4, 0, 4, 8, 12, 16, 20, 24, 28, ...
25, 21, 17, 13, 9, 5, 1, 3, 7, 11, 15, 19, ...
...
A(2,0) = 4 since z^2 - 2*z = 0 and z^2 + 2*z = 0 have respectively roots 0, 2, and -2, 0 with squared distance equal to 4;
A(1,2) = 7 since z^2 - z + 2 = 0 and z^2 + z + 2 = 0 have respectively roots (1 +- i*sqrt(7))/2 and (-1 +- i*sqrt(7))/2 with squared distance equal to 7, where i denotes the imaginary unit.
-
A[n_,m_]:=Abs[n^2-4m]; Table[A[n-m,m],{n,0,11},{m,0,n}]//Flatten
Comments