cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A162860 Numbers k such that k^2+4*k+1 is prime.

Original entry on oeis.org

2, 6, 8, 12, 18, 24, 30, 32, 38, 42, 44, 56, 62, 66, 78, 84, 86, 90, 96, 108, 110, 116, 122, 126, 134, 138, 140, 144, 162, 170, 188, 192, 200, 204, 206, 216, 218, 248, 252, 264, 266, 294, 296, 302, 308, 318, 320, 324, 326, 330, 338, 348, 354, 360, 368, 414, 416
Offset: 1

Views

Author

Keywords

Examples

			a(1) = k = 2 is in the sequence because 2^2+4*2+1=13 = A028874(1) is prime.
		

Crossrefs

Cf. A028874.

Programs

  • Mathematica
    f[a_]:=a^2+4*a+1; lst={};Do[If[PrimeQ[f[n]],AppendTo[lst,n]],{n,6!}]; lst
    Select[Range[500],PrimeQ[#^2+4#+1]&] (* Harvey P. Dale, May 28 2012 *)

Formula

a(n) = A028873(n)-2. - R. J. Mathar, Aug 12 2009

A309726 Numbers k such that k^2 - 12 is prime.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 25, 29, 35, 41, 49, 53, 59, 61, 79, 85, 91, 95, 97, 103, 107, 113, 119, 121, 137, 139, 145, 149, 163, 169, 173, 179, 181, 185, 191, 205, 209, 227, 233, 235, 245, 251
Offset: 1

Views

Author

Daniel Starodubtsev, Aug 14 2019

Keywords

Comments

All terms are odd and not divisible by 3.

Examples

			11 is in the sequence because 11^2 - 12 = 109, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5,301,2],PrimeQ[#^2-12]&] (* Harvey P. Dale, Dec 23 2019 *)
  • PARI
    select(n->isprime(n^2-12), [1..1000]) \\ Andrew Howroyd, Aug 14 2019

Formula

If A056927(k) = 12, then k is a term. - A.H.M. Smeets, Aug 15 2019

A329103 Numbers k such that both k^2 - 3 and 2^k - 3 are primes.

Original entry on oeis.org

4, 10, 14, 20, 266, 452, 694
Offset: 1

Views

Author

Alex Ratushnyak, Nov 04 2019

Keywords

Comments

a(8) > 2086750, using A050414. - Michael S. Branicky, Feb 16 2024

Crossrefs

Intersection of A050414 and A028873.

Programs

  • PARI
    isok(k) = isprime(k^2 - 3) && isprime(2^k - 3); \\ Michel Marcus, Jul 02 2021

A330438 Numbers k such that k^2-2 and k^3-2 are prime.

Original entry on oeis.org

9, 15, 19, 27, 37, 121, 135, 145, 211, 217, 259, 265, 267, 279, 355, 357, 387, 391, 435, 489, 525, 561, 615, 621, 727, 951, 987, 1029, 1119, 1141, 1177, 1251, 1287, 1357, 1435, 1491, 1561, 1617, 1717, 1785, 1819, 1839, 1875, 1909, 1989, 2001, 2077, 2107, 2211
Offset: 1

Views

Author

K. D. Bajpai, Dec 14 2019

Keywords

Comments

Intersection of A028870 and A038599.

Examples

			a(1) = 9: 9^2 - 2 = 79; 9^3 - 2 = 727; both results are prime.
a(2) = 15: 15^2 - 2 = 223; 15^3 - 2 = 3373; both results are prime.
		

Crossrefs

Programs

  • Magma
    [n : n in [1 .. 100] | IsPrime (n^2 - 2) and IsPrime (n^3 - 2)];
  • Maple
    filter:= k -> isprime(k^2-2) and isprime(k^3-2):
    select(filter, [$2..10000]); # Robert Israel, Dec 24 2019
  • Mathematica
    Select[Range[10000], PrimeQ[#^3 - 2] && PrimeQ[#^2 - 2] &]

A348425 Squares whose second arithmetic derivative is a square.

Original entry on oeis.org

0, 1, 4, 49, 529, 2209, 6241, 27889, 28561, 35344, 49729, 128881, 192721, 250000, 431649, 528529, 703921, 1181569, 1495729, 1610361, 1868689, 3411409, 4870849, 5755201, 9138529, 11390625, 12250000, 13830961, 13845841, 15737089, 22648081, 25391521, 31618129
Offset: 1

Views

Author

Marius A. Burtea, Oct 18 2021

Keywords

Comments

For prime numbers of the form p = k^2 - 2 (A028871) the number m = p^2 is a term because m'' = (p^2)'' = (2*p*p')' = (2*p)'= p + 2*p' = p + 2 = k^2.
If m is a term in A028873 then p = m^2 - 3 is prime and k = p^4 is a term. Indeed: k' = 4*p^3 and k'' = 4*p^3 + 12*p^2 = 4*p^2*(p + 3) = 4*p^2*m^2.
If m is a term in A201787 then p = 5*m^2 - 6 is prime and k = p^6 is a term. Indeed: k' = 6*p^5 and k'' = 5*p^5 + 30*p^4 = 5*p^4*(p + 6) = 25*p^4*m^2.

Examples

			4'' = 4' = 4 so 4 is a term.
49'' = 14' = 9 so 49 is a term.
		

Crossrefs

Programs

  • Magma
    f:=func; [n:n in [s*s:s in [0.. 5623]] | IsSquare(Floor(f(Floor(f(n)))))];
    
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[0, 6000]^2, IntegerQ @ Sqrt[d[d[#]]] &] (* Amiram Eldar, Oct 18 2021 *)
  • PARI
    ad(n) = if (n<1, 0, my(f = factor(n)); n*sum(k=1, #f~, f[k, 2]/f[k, 1])); \\ A003415
    lista(nn) = {for (n=0, nn, if (issquare(ad(ad(n^2))), print1(n^2, ", ")); ); } \\ Michel Marcus, Oct 30 2021
Previous Showing 11-15 of 15 results.