A225393 Expansion of 1/(1 - x - x^2 + x^6 - x^8).
1, 1, 2, 3, 5, 8, 12, 19, 30, 47, 74, 116, 183, 288, 453, 713, 1122, 1766, 2779, 4373, 6882, 10830, 17043, 26820, 42206, 66419, 104522, 164484, 258845, 407339, 641021, 1008761, 1587466, 2498162, 3931305, 6186612, 9735741, 15320931, 24110227, 37941757, 59708145
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Mohammed L. Nadji, Moussa Ahmia, Daniel F. Checa, and José L. Ramírez, Arndt Compositions with Restricted Parts, Palindromes, and Colored Variants, J. Int. Seq. (2025) Vol. 28, Issue 3, Article 25.3.6. See p. 8.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,0,-1,0,1).
Crossrefs
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x-x^2+x^6-x^8))); // G. C. Greubel, Nov 03 2018 -
Mathematica
CoefficientList[Series[1/(1 - x - x^2 + x^6 - x^8), {x, 0, 50}], x] LinearRecurrence[{1,1,0,0,0,-1,0,1},{1,1,2,3,5,8,12,19},50] (* G. C. Greubel, Nov 16 2016 *)
-
PARI
Vec(1/(1-x-x^2+x^6-x^8) + O(x^50)) \\ G. C. Greubel, Nov 16 2016
Formula
G.f.: 1/(1 - x - x^2 + x^6 - x^8).
a(n) = a(n-1) + a(n-2) - a(n-6) + a(n-8). - Ilya Gutkovskiy, Nov 16 2016
Comments