A173925 Expansion of 1/(1 - x - x^8 - x^15 + x^16).
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 19, 24, 30, 37, 45, 56, 69, 85, 105, 130, 161, 199, 246, 304, 376, 465, 575, 711, 879, 1086, 1343, 1660, 2052, 2537, 3137, 3879, 4796, 5929, 7330, 9062, 11203, 13850, 17123, 21170, 26173, 32359, 40006
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Mossinghoff, Small Salem Numbers
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 60); Coefficients(R!(1/(1-x-x^8-x^15+x^16))); // G. C. Greubel, Nov 03 2018 -
Maple
seq(coeff(series(1/(1-x-x^8-x^15+x^16), x, n+1), x, n), n = 0..60); # G. C. Greubel, Dec 15 2019
-
Mathematica
CoefficientList[Series[1/(1-x-x^8-x^15+x^16), {x, 0, 60}] ,x] (* Harvey P. Dale, Apr 02 2012 *)
-
PARI
my(x='x+O('x^60)); Vec(1/(1-x-x^8-x^15+x^16)) \\ G. C. Greubel, Nov 03 2018
-
Sage
def A173925_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/(1-x-x^8-x^15+x^16) ).list() A173925_list(60) # G. C. Greubel, Dec 15 2019
Formula
a(n) = a(n-1) + a(n-8) + a(n-15) - a(n-16). - Harvey P. Dale, Apr 02 2012
Comments