cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A030074 Squares which are palindromes in base 14.

Original entry on oeis.org

0, 1, 4, 9, 225, 576, 900, 2209, 27225, 38809, 44521, 50625, 57121, 155236, 166464, 178084, 4796100, 5978025, 7535025, 8732025, 10017225, 30140100, 32490000, 73359225, 1475865889, 1490963769, 1506138481, 1521390025
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    pb14Q[n_]:=Module[{idn14=IntegerDigits[n, 14]}, idn14==Reverse[idn14]]; Select[Range[0, 20000]^2, pb14Q] (* Vincenzo Librandi, Jul 24 2014 *)

A030075 Squares which are palindromes in base 15.

Original entry on oeis.org

0, 1, 4, 9, 16, 64, 144, 256, 361, 1024, 1521, 4096, 5776, 16384, 20736, 51076, 58081, 65536, 73441, 96721, 204304, 218089, 228484, 232324, 331776, 511225, 817216, 929296, 1048576, 3055504, 3268864, 3489424, 5308416, 7033104
Offset: 1

Views

Author

Keywords

Examples

			8^2 = 64, which in base 15 is 44, and that's palindromic, so 64 is in the sequence.
9^2 = 81, which in base 15 is 56. Since that's not palindromic, 81 is not in the sequence.
		

Crossrefs

Programs

  • Maple
    N:= 10^10: # to get all entries <= N
    count:= 0:
    for x from 0 to floor(sqrt(N)) do
        y:= x^2;
        L:= convert(y,base,15);
      if ListTools[Reverse](L) = L then
         count:= count+1;
         A[count]:= y;
       fi
    od:
    seq(A[i],i=1..count); # Robert Israel, Jul 24 2014
  • Mathematica
    palQ[n_, b_:10] := Module[{idn = IntegerDigits[n, b]}, idn == Reverse[idn]]; Select[Range[0, 2700]^2, palQ[#, 15] &]  (* Harvey P. Dale, Apr 23 2011 *)
  • PARI
    isok(n) = my(d=digits(n,15)); issquare(n) && (d == Vecrev(d)); \\ Michel Marcus, Oct 21 2016

A081502 Let n = 10x + y where 0 <= y <= 9, x >= 0. Then a(n) = 3x+y.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 21, 22, 23, 24, 25, 26, 27, 28, 29
Offset: 0

Views

Author

N. J. A. Sloane, Apr 22 2003

Keywords

Comments

Eswaran observes that n is divisible by 7 iff repeated application of a ends at the number 7.
a(n) is divisible by 7 iff n is divisible by 7: e.g., a(7) = a(14) = a(21) = 7, a(28) = a(35) = a(42) = 14 etc. - Zak Seidov, Mar 19 2014

References

  • R. Eswaran, Test of divisibility of the number 7, Abstracts Amer. Math. Soc., 23 (No. 2, 2002), #974-00-5, p. 275.

Crossrefs

Different from A028898 for n>=100 (e.g. a(111) = 34, A029989(111) = 13).

Programs

  • Maple
    A081502 := proc(n)
        local x,y ;
        y := modp(n,10) ;
        x := iquo(n,10) ;
        3*x+y ;
    end proc:
    seq(A081502(n),n=0..120) ; # R. J. Mathar, Oct 03 2014
  • Mathematica
    Table[n - 7 * Floor[n / 10], {n, 0, 100}] (* Joshua Oliver, Dec 04 2019 *)
  • PARI
    a(n) = 3*(n\10) + (n % 10); \\ Michel Marcus, Mar 19 2014
    
  • PARI
    a(n) = [3,1]*divrem(n,10); \\ Kevin Ryde, Dec 04 2019

Formula

G.f.: -x*(6*x^9-x^8-x^7-x^6-x^5-x^4-x^3-x^2-x-1) / (x^11-x^10-x+1). - Colin Barker, Mar 19 2014
a(n) = n-7*floor(n/10). - Wesley Ivan Hurt, May 12 2016

A263612 Palindromes in base 5 which are also squares.

Original entry on oeis.org

0, 1, 4, 121, 10201, 12321, 114411, 1002001, 1234321, 100020001, 102030201, 121242121, 131141131, 10000200001, 10221412201, 12102420121, 131441144131, 1000002000001, 1002003002001, 1020304030201, 1143442443411, 1210024200121, 4133144413314, 4342230322434, 13431400413431, 100000020000001
Offset: 1

Views

Author

N. J. A. Sloane, Oct 23 2015

Keywords

Comments

Terms displayed in base 5. - Harvey P. Dale, Jan 10 2023

Crossrefs

Programs

  • Mathematica
    FromDigits[IntegerDigits[#,5]]&/@Select[Range[0,100000]^2,IntegerDigits[ #,5] == Reverse[ IntegerDigits[ #,5]]&] (* Harvey P. Dale, Jan 10 2023 *)

A263611 Base 5 numbers whose square is a palindrome in base 5.

Original entry on oeis.org

0, 1, 2, 11, 101, 111, 231, 1001, 1111, 10001, 10101, 11011, 11204, 100001, 101101, 110011, 242204, 1000001, 1001001, 1010101, 1042214, 1100011, 2020303, 2043122, 2443304, 10000001, 10011001, 10100101, 11000011, 100000001, 100010001, 100101001, 101000101, 110000011, 111103411
Offset: 1

Views

Author

N. J. A. Sloane, Oct 23 2015

Keywords

Comments

A029988 expressed in base 5.

Crossrefs

Programs

  • Mathematica
    With[{b = 5}, FromDigits@ IntegerDigits[#, b] & /@ Select[Range[b^9], PalindromeQ[IntegerDigits[#^2, b]] &]] (* Michael De Vlieger, Aug 15 2022 *)

Formula

a(n) = A007091(A029988(n)).

Extensions

Name corrected by Charles R Greathouse IV, Aug 15 2022
Previous Showing 11-15 of 15 results.