cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A007441 1 + Sum_{n>=1} a_n x^n = Product_{n>=1} (1-x^n)^prime(n).

Original entry on oeis.org

1, -2, -2, 1, 3, 7, 5, 6, -10, -27, -50, -42, -30, 41, 148, 241, 345, 303, 167, -275, -858, -1685, -2342, -2813, -2316, -536, 2914, 8228, 14531, 20955, 24370, 22393, 10265, -13839, -53386, -104364, -161593, -209463, -228141, -188750, -62023, 177547, 541310, 1009998, 1527972, 1976120, 2189974
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = (1/n)*Sum_{k=1..n} a(n-k)*b(k), k>0, a(0)=1, b(k)=-Sum_{d|k} d*prime(d), cf. A061150.

Extensions

Better description from Vladeta Jovovic, Apr 16 2001

A030011 Inverse Euler transform of {1, primes}.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, -1, -2, -3, -2, 4, -1, 5, 3, -4, -5, -9, 3, -3, 15, 19, 0, 6, -39, -27, -22, 5, 57, 50, 107, -49, -96, -142, -213, 83, 138, 468, 365, 0, -327, -1215, -618, -526, 957, 2572, 1831, 1673, -2820, -4516, -6155, -3880, 5998, 9282, 18213, 7414
Offset: 1

Views

Author

Keywords

Examples

			(1-x)^(-1) * (1-x^2)^(-1) * (1-x^3)^(-1) * (1-x^4)^(-1) * (1-x^5)^(-1) * (1-x^6)^(-1) * (1-x^7) * (1-x^8)^2 * ... = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 13*x^7 + 17*x^8 + ... .
		

Crossrefs

Programs

  • Mathematica
    pp = Prepend[Prime[Range[n = 100]], 1]; s = {};
    For[i = 1, i <= n + 1, i++, AppendTo[s, i*pp[[i]] - Sum[s[[d]]*pp[[i - d]], {d, i - 1}]]];
    Table[Sum[If[Divisible[i, d], MoebiusMu[i/d], 0]*s[[d]], {d, 1, i}]/i, {i,
    n + 1}] (* Jean-François Alcover, May 10 2019 *)

Formula

Product_{k>=1} 1/(1-x^k)^{a(k)} = 1 + x + Sum_{n>=1} prime(n) * x^(n + 1).

A072508 Decimal expansion of Backhouse constant.

Original entry on oeis.org

1, 4, 5, 6, 0, 7, 4, 9, 4, 8, 5, 8, 2, 6, 8, 9, 6, 7, 1, 3, 9, 9, 5, 9, 5, 3, 5, 1, 1, 1, 6, 5, 4, 3, 5, 5, 7, 6, 5, 3, 1, 7, 8, 3, 7, 4, 8, 4, 7, 1, 3, 1, 5, 4, 0, 2, 7, 0, 7, 0, 2, 4, 3, 7, 4, 1, 4, 0, 0, 1, 5, 0, 6, 2, 6, 5, 3, 8, 9, 8, 9, 5, 5, 9, 9, 6, 4, 5, 3, 1, 9, 4, 0, 1, 8, 6, 0, 3, 0, 9, 1, 0, 9, 9, 2
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

The reciprocal (A088751) of Backhouse's constant is the real zero of a certain power series. - T. D. Noe, Oct 14 2003

Examples

			1.4560749485826896713995953...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.5, p. 294.

Crossrefs

Continued fraction is in A074269.

Programs

  • Mathematica
    RealDigits[-1/x /. FindRoot[0 == 1 + Sum[x^n Prime[n], {n, 1000}], {x, {0, 1}}, WorkingPrecision -> 100]][[1]] (* T. D. Noe, corrected Apr 26 2013 *)

A305871 -1 + Product_{n>=1} (1 + x^n)^a(n) = g.f. of A000040 (prime numbers).

Original entry on oeis.org

2, 2, 1, 2, 2, -2, 2, -2, 4, -1, 4, -7, 10, -19, 20, -20, 34, -42, 64, -100, 126, -178, 258, -326, 464, -675, 936, -1371, 1888, -2550, 3690, -5208, 7292, -10467, 14742, -20808, 29610, -41586, 59052, -84438, 119602, -170153, 242256, -343534, 489550, -697815
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 12 2018

Keywords

Comments

Inverse weigh transform of A000040.

Examples

			(1 + x)^2 * (1 + x^2)^2 * (1 + x^3) * (1 + x^4)^2 * (1 + x^5)^2 * (1 + x^6)^(-2) * ... * (1 + x^n)^a(n) * ... = 1 + 2*x + 3*x^2 + 5*x^3 + 7*x^4 + 11*x^5 + 13*x^6 + ... + A000040(k)*x^k + ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) option remember; ithprime(n)-b(n, n-1) end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Jun 13 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
         Sum[Binomial[a[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
    a[n_] := a[n] = Prime[n] - b[n, n - 1];
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 18 2022, after Alois P. Heinz *)

Formula

Product_{n>=1} (1 + x^n)^a(n) = 1 + Sum_{k>=1} prime(k)*x^k.

A088751 Decimal expansion of -x, the real root of the equation 0 = 1 + Sum_{k>=1} prime(k) x^k. The inverse of Backhouse's constant (A072508).

Original entry on oeis.org

6, 8, 6, 7, 7, 7, 8, 3, 4, 4, 6, 0, 6, 3, 4, 9, 5, 4, 4, 2, 6, 5, 4, 0, 2, 2, 3, 7, 0, 6, 7, 6, 9, 2, 6, 9, 2, 2, 7, 0, 0, 2, 6, 3, 7, 6, 2, 2, 5, 0, 4, 2, 0, 7, 3, 9, 3, 4, 2, 5, 8, 2, 9, 4, 0, 1, 1, 5, 3, 1, 0, 0, 8, 7, 7, 0, 0, 4, 3, 7, 3, 6, 6, 9, 6, 9, 5, 3, 0, 1, 0, 6, 7, 6, 8, 2, 5, 9, 0, 1
Offset: 0

Views

Author

T. D. Noe, Oct 14 2003

Keywords

Comments

This constant is computed in Finch's article. This number is easier to compute than Backhouse's constant. Except for an additional term of 0, the continued fraction expansion is the same as that of Backhouse's constant.

Examples

			0.68677783446063...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.5, p. 294.

Crossrefs

Programs

  • Mathematica
    RealDigits[ -x/.FindRoot[0==1+Sum[x^n Prime[n], {n, 1000}], {x, {0, 1}}, WorkingPrecision->100]][[1]]

A305882 -1 + Product_{n>=1} 1/(1 + a(n)*x^n) = g.f. of A000040 (prime numbers).

Original entry on oeis.org

-2, 1, 1, 4, 4, 13, 16, 44, 52, 112, 182, 411, 620, 1318, 2142, 5148, 7676, 15228, 27530, 58660, 98372, 207392, 364464, 763263, 1341508, 2773990, 4923220, 10470948, 18510902, 37546152, 69269976, 148419094, 258284232, 534761242, 981480012, 2004302204
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 13 2018

Keywords

Examples

			1/((1 - 2*x) * (1 + x^2) * (1 + x^3) * (1 + 4*x^4) * (1 + 4*x^5) * ... * (1 + a(n)*x^n) * ...) =  1 + 2*x + 3*x^2 + 5*x^3 + 7*x^4 + 11*x^5 + ... + A000040(k)*x^k + ...
		

Crossrefs

Formula

Product_{n>=1} 1/(1 + a(n)*x^n) = 1 + Sum_{k>=1} prime(k)*x^k.
Product_{n>=1} (1 + a(n)*x^n) = Sum_{k>=0} A030018(k)*x^k.

A308298 Expansion of Sum_{k>=1} mu(k)*log(1 + Sum_{j>=1} x^(prime(j)*k))/k.

Original entry on oeis.org

0, 1, 1, -1, 0, -1, 1, 0, -1, -1, 2, 1, 0, -3, 0, 1, 3, -2, -1, 0, 4, -3, -1, -5, 6, 2, 2, -11, 4, 4, 13, -16, -5, -8, 30, -8, -7, -33, 42, 8, 16, -82, 27, 19, 95, -116, -21, -45, 223, -82, -40, -264, 326, 46, 135, -629, 242, 99, 752, -942, -105, -421, 1826, -717, -240
Offset: 1

Views

Author

Ilya Gutkovskiy, May 19 2019

Keywords

Comments

Inverse Euler transform of A010051.

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + Sum[x^(Prime[j] k), {j, 1, nmax}]]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

-1 + Product_{n>=1} 1/(1 - x^n)^a(n) = g.f. of A010051.

A348128 Product_{n>=1} (1 + a(n)*x^n) = 1 + Sum_{n>=1} x^prime(n).

Original entry on oeis.org

0, 1, 1, 0, 0, 0, 1, 0, -1, -1, 2, 1, 0, -2, 0, 1, 3, -2, -1, 0, 4, 0, -1, -4, 6, 2, 2, -10, 4, 4, 13, -15, -7, -2, 30, -7, -7, -33, 42, 8, 16, -70, 27, 22, 95, -116, -21, -39, 223, -61, -48, -261, 326, 51, 129, -581, 242, 109, 752, -932, -105, -330, 1806, -612, -240, -2140, 2750, 227, 1245, -4865
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 01 2021

Keywords

Crossrefs

A348127 Product_{n>=1} 1 / (1 - a(n)*x^n) = 1 + Sum_{n>=1} x^prime(n).

Original entry on oeis.org

0, 1, 1, -1, 0, -1, 1, -1, -1, -1, 2, 0, 0, -3, 0, 0, 3, -3, -1, -1, 4, -4, -1, -5, 6, 2, 2, -17, 4, 4, 13, -16, -7, -11, 30, -14, -7, -34, 42, 7, 16, -80, 27, 6, 95, -117, -21, -60, 223, -97, -48, -265, 326, 53, 129, -800, 242, 93, 752, -948, -105, -499, 1806, -853, -240, -2189, 2750, 124
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 01 2021

Keywords

Crossrefs

Programs

  • Maple
    N:= 20: # for a(1)..a(N)
    P:= 1: a:= Vector(N):
    for n from 1 to N do
      c:= coeff(P,x,n);
      if isprime(n) then a[n]:= 1-c  else a[n]:= -c fi;
      P:= series(P/(1-a[n]*x^n),x,N+1);
    od:
    convert(a,list); # Robert Israel, Mar 01 2022

A380498 Inverse Euler transform of primorial numbers.

Original entry on oeis.org

2, 3, 20, 150, 1860, 24950, 444060, 8583780, 202071920, 5992771854, 186947632200, 7001535703840, 288868991951760, 12455290280427090, 587972068547997856, 31327583556941402160, 1856116108295418943020, 113366872636395265380920, 7619343577986975410930880, 541957669076266398658079700
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 25 2025

Keywords

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember; `if`(n<1, 1, p(n-1)*ithprime(n)) end:
    ietr:= proc(p) uses numtheory; (c-> proc(n) option remember;
             `if`(n=0, 1, add(mobius(n/d)*c(d), d=divisors(n))/n) end)(
              proc(n) option remember; n*p(n)-add(thisproc(j)*p(n-j), j=1..n-1) end)
           end:
    a:= ietr(p):
    seq(a(n), n=1..20);  # Alois P. Heinz, Jan 25 2025
  • Mathematica
    primorial[n_] := Product[Prime[j], {j, 1, n}]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i] + j - 1, j] b[n - i j, i - 1], {j, 0, n/i}]]]; a[n_] := primorial[n] - b[n, n - 1]; a /@ Range[20]

Formula

Product_{n>=1} 1 / (1 - x^n)^a(n) = Sum_{n>=0} prime(n)# * x^n.
Showing 1-10 of 11 results. Next