cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 91 results. Next

A303837 Number of z-trees with least common multiple n > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 4, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 10, 1, 1, 2, 1, 1, 4, 1, 2, 1, 4, 1, 6, 1, 1, 2, 2, 1, 4, 1, 4, 1, 1, 1, 10, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 19 2018

Keywords

Comments

Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. Then a z-tree is a finite connected set of pairwise indivisible positive integers greater than 1 with clutter density -1.
This is a generalization to multiset systems of the usual definition of hypertree (viz. connected hypergraph F such that two distinct hyperedges of F intersect in at most a common vertex and such that every cycle of F is contained in a hyperedge).
If n is squarefree with k prime factors, then a(n) = A030019(k).

Examples

			The a(72) = 6 z-trees together with the corresponding multiset systems (see A112798, A302242) are the following.
      (72): {{1,1,1,2,2}}
    (8,18): {{1,1,1},{1,2,2}}
    (8,36): {{1,1,1},{1,1,2,2}}
    (9,24): {{2,2},{1,1,1,2}}
   (6,8,9): {{1,2},{1,1,1},{2,2}}
  (8,9,12): {{1,1,1},{2,2},{1,1,2}}
The a(60) = 10 z-trees together with the corresponding multiset systems are the following.
       (60): {{1,1,2,3}}
     (4,30): {{1,1},{1,2,3}}
     (6,20): {{1,2},{1,1,3}}
    (10,12): {{1,3},{1,1,2}}
    (12,15): {{1,1,2},{2,3}}
    (12,20): {{1,1,2},{1,1,3}}
    (15,20): {{2,3},{1,1,3}}
   (4,6,10): {{1,1},{1,2},{1,3}}
   (4,6,15): {{1,1},{1,2},{2,3}}
  (4,10,15): {{1,1},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    Table[Length[Select[Rest[Subsets[Rest[Divisors[n]]]],And[zensity[#]==-1,zsm[#]=={n},Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,2,50}]

A305052 z-density of the integer partition with Heinz number n. Clutter density of the n-th multiset multisystem (A302242).

Original entry on oeis.org

0, -1, -1, -2, -1, -2, -1, -3, -1, -2, -1, -3, -1, -2, -2, -4, -1, -2, -1, -3, -1, -2, -1, -4, -1, -2, -1, -3, -1, -3, -1, -5, -2, -2, -2, -3, -1, -2, -1, -4, -1, -2, -1, -3, -2, -2, -1, -5, -1, -2, -2, -3, -1, -2, -2, -4, -1, -2, -1, -4, -1, -2, -1, -6, -1, -3
Offset: 1

Views

Author

Gus Wiseman, May 24 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The z-density of a multiset S of positive integers is Sum_{s in S} (omega(s) - 1) - omega(lcm(S)) where omega = A001221 is number of distinct prime factors.
First nonnegative entry after a(1) = 0 is a(169) = 0.

Examples

			The 1105th multiset multisystem is {{2},{1,2},{4}} with clutter density -2, so a(1105) = -2.
The 5429th multiset multisystem is {{1,2,2},{1,1,1,2}} with clutter density 0, so a(5429) = 0.
The 11837th multiset multisystem is {{1,1},{1,1,1},{1,1,1,2}} with clutter density -1, so a(11837) = -1.
The 42601th multiset multisystem is {{1,2},{1,3},{1,2,3}} with clutter density 1, so a(42601) = 1.
		

Crossrefs

Programs

  • Mathematica
    zens[n_]:=If[n==1,0,Total@Cases[FactorInteger[n],{p_,k_}:>k*(PrimeNu[PrimePi[p]]-1)]-PrimeNu[LCM@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]]]];
    Array[zens,100]

A304118 Number of z-blobs with least common multiple n > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 19 2018

Keywords

Comments

Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. A z-blob is a finite connected set S of pairwise indivisible positive integers greater than 1 such that no cap of S with at least two edges has clutter density -1.
If n is squarefree with k prime factors, then a(n) = A275307(k).

Examples

			The a(60) = 7 z-blobs together with the corresponding multiset systems (see A112798, A302242) are the following.
        (60): {{1,1,2,3}}
     (12,30): {{1,1,2},{1,2,3}}
     (20,30): {{1,1,3},{1,2,3}}
   (6,15,20): {{1,2},{2,3},{1,1,3}}
  (10,12,15): {{1,3},{1,1,2},{2,3}}
  (12,15,20): {{1,1,2},{2,3},{1,1,3}}
  (12,20,30): {{1,1,2},{1,1,3},{1,2,3}}
The a(120) = 14 z-blobs together with the corresponding multiset systems are the following.
       (120): {{1,1,1,2,3}}
     (24,30): {{1,1,1,2},{1,2,3}}
     (24,60): {{1,1,1,2},{1,1,2,3}}
     (30,40): {{1,2,3},{1,1,1,3}}
     (40,60): {{1,1,1,3},{1,1,2,3}}
   (6,15,40): {{1,2},{2,3},{1,1,1,3}}
  (10,15,24): {{1,3},{2,3},{1,1,1,2}}
  (12,15,40): {{1,1,2},{2,3},{1,1,1,3}}
  (12,30,40): {{1,1,2},{1,2,3},{1,1,1,3}}
  (15,20,24): {{2,3},{1,1,3},{1,1,1,2}}
  (15,24,40): {{2,3},{1,1,1,2},{1,1,1,3}}
  (20,24,30): {{1,1,3},{1,1,1,2},{1,2,3}}
  (24,30,40): {{1,1,1,2},{1,2,3},{1,1,1,3}}
  (24,40,60): {{1,1,1,2},{1,1,1,3},{1,1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    zreeQ[s_]:=And[Length[s]>=2,zensity[s]==-1];
    zlobQ[s_]:=Apply[And,Composition[Not,zreeQ]/@Apply[LCM,zptns[s],{2}]];
    zswell[s_]:=Union[LCM@@@Select[Subsets[s],Length[zsm[#]]==1&]];
    zkernels[s_]:=Table[Select[s,Divisible[w,#]&],{w,zswell[s]}];
    zptns[s_]:=Select[stableSets[zkernels[s],Length[Intersection[#1,#2]]>0&],Union@@#==s&];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[If[n==1,0,Length[Select[Rest[Subsets[Rest[Divisors[n]]]],And[zsm[#]=={n},Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={},zlobQ[#]]&]]],{n,100}]

A134955 Number of "hyperforests" on n unlabeled nodes, i.e., hypergraphs that have no cycles, assuming that each edge contains at least two vertices.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 50, 128, 351, 1009, 3035, 9464, 30479, 100712, 340072, 1169296, 4082243, 14438577, 51643698, 186530851, 679530937, 2494433346, 9219028889, 34280914106, 128179985474, 481694091291, 1818516190252, 6894350122452
Offset: 0

Views

Author

Don Knuth, Jan 26 2008

Keywords

Comments

A hyperforest is an antichain of finite nonempty sets (edges) whose connected components are hypertrees. It is spanning if all vertices are covered by some edge. However, it is common to represent uncovered vertices as singleton edges. For example, {{1,2},{1,4}} and {{3},{1,2},{1,4}} may represent the same hyperforest, the former being free of singletons (see example 2) and the latter being spanning (see example 1). This is different from a hyperforest with singleton edges allowed, which is one whose non-singleton edges only are required to form an antichain. For example, {{1},{2},{1,3},{2,3}} is a hyperforest with singleton edges allowed. - Gus Wiseman, May 22 2018
Equivalently, number of block graphs on n nodes, that is, graphs where every block is a complete graph. These graphs can be characterized as induced-diamond-free chordal graphs. - Falk Hüffner, Jul 25 2019

Examples

			From _Gus Wiseman_, May 20 2018: (Start)
Non-isomorphic representatives of the a(4) = 9 spanning hyperforests are the following:
  {{1,2,3,4}}
  {{1},{2,3,4}}
  {{1,2},{3,4}}
  {{1,4},{2,3,4}}
  {{1},{2},{3,4}}
  {{1},{2,4},{3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1},{2},{3},{4}}
Non-isomorphic representatives of the a(4) = 9 hyperforests spanning up to 4 vertices without singleton edges are the following:
  {}
  {{1,2}}
  {{1,2,3}}
  {{1,2,3,4}}
  {{1,2},{3,4}}
  {{1,3},{2,3}}
  {{1,4},{2,3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
(End)
		

References

  • D. E. Knuth: The Art of Computer Programming, Volume 4, Generating All Combinations and Partitions Fascicle 3, Section 7.2.1.4. Generating all partitions. Page 38, Algorithm H. - Washington Bomfim, Sep 25 2008

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(B): c:= etr(b): B:= n-> if n=0 then 0 else c(n-1) fi: C:= etr(B): aa:= proc(n) option remember; B(n)+C(n) -add(B(k)*C(n-k), k=0..n) end: a:= etr(aa): seq(a(n), n=0..27); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b = etr[B]; c = etr[b]; B[n_] := If[n == 0, 0, c[n-1]]; CC = etr[B]; aa[n_] := aa[n] = B[n]+CC[n]-Sum[B[k]*CC[n-k], {k, 0, n}]; a = etr[aa]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz*)
  • PARI
    \\ here b is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); concat([1], EulerT(Vec(x*Ser(EulerT(u))*(1-x*Ser(u)))))} \\ Andrew Howroyd, May 22 2018

Formula

Euler transform of A035053. - N. J. A. Sloane, Jan 30 2008
a(n) = Sum of prod_{k=1}^n\,{A035053(k) + c_k -1 /choose c_k} over all the partitions of n, c_1 + 2c_2 + ... + nc_n; c_1, c_2, ..., c_n >= 0. - Washington Bomfim, Sep 25 2008
a(n) ~ c * d^n / n^(5/2), where d = 4.189610958393826965527036454524... (see A245566), c = 0.36483930544... . - Vaclav Kotesovec, Jul 26 2014

A293510 Number of connected minimal covers of n vertices.

Original entry on oeis.org

1, 1, 1, 4, 23, 241, 3732, 83987, 2666729, 117807298, 7217946453, 612089089261, 71991021616582, 11761139981560581, 2675674695560997301, 849270038176762472316, 376910699272413914514283, 234289022942841270608166061, 204344856617470777364053906796
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2017

Keywords

Comments

A cover of a finite set S is a finite set of finite nonempty sets with union S. A cover is minimal if removing any edge results in a cover of strictly fewer vertices. A cover is connected if it is connected as a hypergraph or clutter. Note that minimality is with respect to covering rather than to connectedness (cf. A030019).

Examples

			The a(3) = 4 covers are: ((12)(13)), ((12)(23)), ((13)(23)), ((123)).
		

Crossrefs

Programs

  • Mathematica
    nn=30;ser=Sum[(1+Sum[Binomial[n,i]*StirlingS2[i,k]*(2^k-k-1)^(n-i),{k,2,n},{i,k,n}])*x^n/n!,{n,0,nn}];
    Table[n!*SeriesCoefficient[1+Log[ser],{x,0,n}],{n,0,nn}]

A134957 Number of hyperforests with n unlabeled vertices: analog of A134955 when edges of size 1 are allowed (with no two equal edges).

Original entry on oeis.org

1, 2, 6, 20, 75, 310, 1422, 7094, 37877, 213610, 1256422, 7641700, 47735075, 304766742, 1981348605, 13079643892, 87480944764, 591771554768, 4042991170169, 27864757592632, 193549452132550, 1353816898675732, 9529263306483357, 67457934248821368, 480019516988969011
Offset: 0

Views

Author

Don Knuth, Jan 26 2008

Keywords

Examples

			From _Gus Wiseman_, May 20 2018: (Start)
Non-isomorphic representatives of the a(3) = 20 hyperforests are the following:
  {}
  {{1}}
  {{1,2}}
  {{1,2,3}}
  {{1},{2}}
  {{1},{2,3}}
  {{2},{1,2}}
  {{3},{1,2,3}}
  {{1,3},{2,3}}
  {{1},{2},{3}}
  {{1},{2},{1,2}}
  {{1},{3},{2,3}}
  {{2},{3},{1,2,3}}
  {{2},{1,3},{2,3}}
  {{3},{1,3},{2,3}}
  {{1,2},{1,3},{2,3}}
  {{1},{2},{3},{2,3}}
  {{1},{2},{3},{1,2,3}}
  {{1},{2},{1,3},{2,3}}
  {{2},{3},{1,3},{2,3}}
  {{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,3},{2,3}}
  {{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3}}
(End)
		

Crossrefs

Programs

  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
    EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]];
    ser[v_] := Sum[v[[i]] x^(i - 1), {i, 1, Length[v]}] + O[x]^Length[v];
    b[n_] := Module[{v = {1}}, For[i = 2, i <= n, i++, v = Join[{1}, EulerT[EulerT[2 v]]]]; v];
    seq[n_] := Module[{u = 2 b[n]}, Join[{1}, EulerT[ser[EulerT[u]]*(1 - x*ser[u]) + O[x]^n // CoefficientList[#, x]&]]];
    seq[24] (* Jean-François Alcover, Feb 10 2020, after Andrew Howroyd *)
  • PARI
    \\ here b(n) is A318494 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(2*v)))); v}
    seq(n)={my(u=2*b(n)); concat([1], EulerT(Vec(Ser(EulerT(u))*(1-x*Ser(u)))))} \\ Andrew Howroyd, Aug 27 2018

Formula

Euler transform of A134959. - Gus Wiseman, May 20 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Aug 27 2018

A144959 A134955(n) - A134955(n-1). Number of hyperforests spanning n unlabeled nodes without isolated vertices.

Original entry on oeis.org

1, 0, 1, 2, 5, 11, 30, 78, 223, 658, 2026, 6429, 21015, 70233, 239360, 829224, 2912947, 10356334, 37205121, 134887153, 493000086, 1814902409, 6724595543, 25061885217, 93899071368, 353514105817, 1336822098961, 5075833932200
Offset: 0

Views

Author

Washington Bomfim, Sep 27 2008

Keywords

Comments

a(n) is the number of hyperforests with n unlabeled nodes without isolated vertices. This follows from the fact that for n>0 A134955(n-1) counts the hyperforests of order n with one or more isolated nodes.

Examples

			From _Gus Wiseman_, May 21 2018: (Start)
Non-isomorphic representatives of the a(5) = 11 hyperforests are the following:
  {{1,2,3,4,5}}
  {{1,2},{3,4,5}}
  {{1,5},{2,3,4,5}}
  {{1,2,5},{3,4,5}}
  {{1,2},{2,5},{3,4,5}}
  {{1,2},{3,5},{4,5}}
  {{1,4},{2,5},{3,4,5}}
  {{1,5},{2,5},{3,4,5}}
  {{1,3},{2,4},{3,5},{4,5}}
  {{1,4},{2,5},{3,5},{4,5}}
  {{1,5},{2,5},{3,5},{4,5}}
(End)
		

Crossrefs

Cf. A030019, A035053, A048143, A054921, A134954, A134955, A134957, A144958 (unlabeled forests without isolated vertices), A144959, A304716, A304717, A304867, A304911.

Programs

  • Mathematica
    etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b];
    b[0] = 0; b[n_] := b[n] = etr[etr[b]][n-1];
    c[1] = 0; c[n_] := b[n] + etr[b][n] - Sum[b[k]*etr[b][n-k], {k, 0, n}];
    a = etr[c];
    Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jul 12 2018, after Alois P. Heinz's code for A035053 *)
  • PARI
    \\ here b is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); concat([1], EulerT(concat([0], Vec(Ser(EulerT(u))*(1-x*Ser(u))-1))))} \\ Andrew Howroyd, May 22 2018

Formula

Euler transform of b(1) = 0, b(n > 1) = A035053(n). - Gus Wiseman, May 21 2018

A304887 Number of non-isomorphic blobs of weight n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 3, 8, 14
Offset: 0

Views

Author

Gus Wiseman, May 20 2018

Keywords

Comments

A blob is a connected antichain of finite sets that cannot be capped by a hypertree with more than one branch. The weight of a blob is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices (see A275307).

Examples

			Non-isomorphic representatives of the a(8) = 8 blobs are the following:
  {{1,2,3,4,5,6,7,8}}
  {{1,5,6},{2,3,4,5,6}}
  {{1,2,5,6},{3,4,5,6}}
  {{1,3,4,5},{2,3,4,5}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,4},{1,5},{2,3,4,5}}
  {{2,4},{1,2,5},{3,4,5}}
  {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

A321155 Regular triangle where T(n,k) is the number of non-isomorphic connected multiset partitions of weight n with density -1 <= k < n-2.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 6, 6, 4, 1, 10, 14, 11, 4, 1, 22, 38, 38, 20, 6, 1, 42, 94, 111, 72, 28, 6, 1, 94, 250, 348, 278, 138, 42, 8, 1, 203, 648, 1044, 992, 596, 226, 56, 8, 1, 470, 1728, 3192, 3538, 2536, 1192, 370, 76, 10, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2018

Keywords

Comments

The density of a multiset partition of weight n with e parts and v vertices is n - e - v. The weight of a multiset partition is the sum of sizes of its parts.

Examples

			Triangle begins:
    1
    2    1
    3    2    1
    6    6    4    1
   10   14   11    4    1
   22   38   38   20    6    1
   42   94  111   72   28    6    1
   94  250  348  278  138   42    8    1
  203  648 1044  992  596  226   56    8    1
  470 1728 3192 3538 2536 1192  370   76   10    1
Non-isomorphic representatives of the connected multiset partitions counted in row 5:
{1,2,3,4,5}         {1,2,3,4,4}       {1,2,2,3,3}     {1,1,2,2,2}   {1,1,1,1,1}
{1,4},{2,3,4}       {1,2},{2,3,3}     {1,2,3,3,3}     {1,2,2,2,2}
{4},{1,2,3,4}       {1,3},{2,3,3}     {1,1},{1,2,2}   {1},{1,1,1,1}
{2},{1,3},{2,3}     {2},{1,2,3,3}     {1},{1,2,2,2}   {1,1},{1,1,1}
{2},{3},{1,2,3}     {2,3},{1,2,3}     {1,2},{1,2,2}
{3},{1,3},{2,3}     {3},{1,2,3,3}     {1,2},{2,2,2}
{3},{3},{1,2,3}     {3,3},{1,2,3}     {2},{1,1,2,2}
{1},{2},{2},{1,2}   {1},{1},{1,2,2}   {2},{1,2,2,2}
{2},{2},{2},{1,2}   {1},{1,2},{2,2}   {2,2},{1,2,2}
{1},{1},{1},{1},{1} {1},{2},{1,2,2}   {1},{1},{1,1,1}
                    {2},{1,2},{1,2}   {1},{1,1},{1,1}
                    {2},{1,2},{2,2}
                    {2},{2},{1,2,2}
                    {1},{1},{1},{1,1}
		

Crossrefs

First column is A125702. Row sums are A007718.

A303838 Number of z-forests with least common multiple n > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 8, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 8, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 16, 1, 2, 3, 1, 2, 8, 1, 3, 2, 8, 1, 7, 1, 2, 3, 3, 2, 8, 1, 5, 1, 2, 1, 16, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 19 2018

Keywords

Comments

Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. A z-forest is a finite set of pairwise indivisible positive integers greater than 1 such that all connected components are z-trees, meaning they have clutter density -1.
This is a generalization to multiset systems of the usual definition of hyperforest (viz. hypergraph F such that two distinct hyperedges of F intersect in at most a common vertex and such that every cycle of F is contained in a hyperedge).
If n is squarefree with k prime factors, then a(n) = A134954(k).
Differs from A324837 at positions {1, 180, 210, ...}. For example, a(210) = 55, A324837(210) = 49.

Examples

			The a(60) = 16 z-forests together with the corresponding multiset systems (see A112798, A302242) are the following.
       (60): {{1,1,2,3}}
     (3,20): {{2},{1,1,3}}
     (4,15): {{1,1},{2,3}}
     (4,30): {{1,1},{1,2,3}}
     (5,12): {{3},{1,1,2}}
     (6,20): {{1,2},{1,1,3}}
    (10,12): {{1,3},{1,1,2}}
    (12,15): {{1,1,2},{2,3}}
    (12,20): {{1,1,2},{1,1,3}}
    (15,20): {{2,3},{1,1,3}}
    (3,4,5): {{2},{1,1},{3}}
   (3,4,10): {{2},{1,1},{1,3}}
    (4,5,6): {{1,1},{3},{1,2}}
   (4,6,10): {{1,1},{1,2},{1,3}}
   (4,6,15): {{1,1},{1,2},{2,3}}
  (4,10,15): {{1,1},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    Table[Length[Select[Rest[Subsets[Rest[Divisors[n]]]],Function[s,LCM@@s==n&&And@@Table[zensity[Select[s,Divisible[m,#]&]]==-1,{m,zsm[s]}]&&Select[Tuples[s,2],UnsameQ@@#&&Divisible@@#&]=={}]]],{n,100}]
Previous Showing 11-20 of 91 results. Next