cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A221365 The simple continued fraction expansion of F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = 1/2*(5 - sqrt(21)).

Original entry on oeis.org

1, 3, 1, 21, 1, 108, 1, 525, 1, 2523, 1, 12096, 1, 57963, 1, 277725, 1, 1330668, 1, 6375621, 1, 30547443, 1, 146361600, 1, 701260563, 1, 3359941221, 1, 16098445548, 1, 77132286525, 1, 369562987083, 1, 1770682648896, 1
Offset: 0

Views

Author

Peter Bala, Jan 15 2013

Keywords

Comments

The function F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) is analytic for |x| < 1. When x is a quadratic irrational of the form x = 1/2*(N - sqrt(N^2 - 4)), N an integer greater than 2, the real number F(x) has a predictable simple continued fraction expansion. The first examples of these expansions, for N = 2, 4, 6 and 8, are due to Hanna. See A174500 through A175503. The present sequence is the case N = 5. See also A221364 (N = 3), A221366 (N = 7) and A221367 (N = 9).
If we denote the present sequence by [1, c(1), 1, c(2), 1, c(3), ...] then for k = 1, 2, ..., the simple continued fraction expansion of F((1/2*(5 - sqrt(21)))^k) is given by the sequence [1; c(k), 1, c(2*k), 1, c(3*k), 1, ...].

Examples

			F(1/2*(5 - sqrt(21))) = 1.25274 83510 08359 27965 ... = 1 + 1/(3 + 1/(1 + 1/(21 + 1/(1 + 1/(108 + 1/(1 + 1/(525 + ...))))))).
F((1/2*(5 - sqrt(21)))^2) = 1.04545 84663 16495 30047 ... = 1 + 1/(21 + 1/(1 + 1/(525 + 1/(1 + 1/(12096 + 1/(1 + 1/(277725 + ...))))))).
F((1/2*(5 - sqrt(21)))^3) = 1.00917 43188 83793 73068 ... = 1 + 1/(108 + 1/(1 + 1/(12096 + 1/(1 + 1/(1330668 + 1/(1 + 1/(146361600 + ...))))))).
		

Crossrefs

Cf. A004254, A030221, A054493, A174500 (N = 4), A221364 (N = 3), A221366 (N = 7), A221369 (N = 9).

Programs

  • Mathematica
    LinearRecurrence[{0,6,0,-6,0,1},{1,3,1,21,1,108},40] (* Harvey P. Dale, Jun 06 2023 *)

Formula

a(2*n-1) = (1/2*(5 + sqrt(21)))^n + (1/2*(5 - sqrt(21)))^n - 2 = 3*A054493(n); a(2*n) = 1.
a(4*n+1) = 3*(A030221(n))^2; a(4*n-1) = 21*(A004254(n))^2.
a(n) = 6*a(n-2)-6*a(n-4)+a(n-6). G.f.: -(x^4+3*x^3-5*x^2+3*x+1) / ((x-1)*(x+1)*(x^4-5*x^2+1)). - Colin Barker, Jan 20 2013

A334673 a(n) = 23*a(n-1) - a(n-2) + 1 for n > 1, a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 24, 552, 12673, 290928, 6678672, 153318529, 3519647496, 80798573880, 1854847551745, 42580695116256, 977501140122144, 22439945527693057, 515141245996818168, 11825808712399124808, 271478459139183052417, 6232178751488811080784, 143068632825103471805616
Offset: 0

Views

Author

Francesca Arici, Sep 11 2020

Keywords

Crossrefs

Cf. A004253, A004254, A030221, A097778 (first differences).
Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Programs

  • Mathematica
    CoefficientList[Series[x/((1 - x) (x^2 - 23 x + 1)), {x, 0, 18}], x] (* Michael De Vlieger, Apr 07 2021 *)

Formula

a(n) = A004254(n)*A004254(n+1)/5 = A160695(n+1)/5.
G.f.: x/((1-x)*(x^2-23*x+1)). - Alois P. Heinz, Sep 11 2020
From Klaus Purath, Jun 18 2025: (Start)
a(n) = (A004253(n+1)^2 - 1) / 15.
a(n) = (A030221(n)^2 - 1) / 35.
a(n) + a(n+1) = A004253(n+1)^2. (End)

Extensions

a(13)-a(14) corrected and more terms added by Alois P. Heinz, Sep 11 2020

A340475 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Product_{a=1..n} Product_{b=1..k} (4*sin(a*Pi/(2*n+1))^2 + 4*sin(b*Pi/(2*k+1))^2).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 29, 29, 1, 1, 139, 500, 139, 1, 1, 666, 8329, 8329, 666, 1, 1, 3191, 138301, 463736, 138301, 3191, 1, 1, 15289, 2295701, 25543057, 25543057, 2295701, 15289, 1, 1, 73254, 38105729, 1404312491, 4614756624, 1404312491, 38105729, 73254, 1
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2021

Keywords

Examples

			Square array begins:
  1,   1,      1,        1,          1, ...
  1,   6,     29,      139,        666, ...
  1,  29,    500,     8329,     138301, ...
  1, 139,   8329,   463736,   25543057, ...
  1, 666, 138301, 25543057, 4614756624, ...
		

Crossrefs

Rows and columns 0..1 give A000012, A030221.
Main diagonal gives A127605.

Programs

  • PARI
    default(realprecision, 120);
    {T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*sin(a*Pi/(2*n+1))^2+4*sin(b*Pi/(2*k+1))^2)))}

Formula

T(n,k) = T(k,n).

A387017 Expansion of (Product_{k>=1} (1 - x^k)^2/(1 - 5*x^k + x^(2*k)) - 1)/3.

Original entry on oeis.org

1, 6, 28, 139, 660, 3192, 15260, 73254, 350848, 1681650, 8056608, 38604748, 184963130, 886226880, 4246152960, 20344613659, 97476826932, 467039887908, 2237722185188, 10721572793580, 51370139753240, 246129134364792, 1179275522335680, 5650248517615128
Offset: 1

Views

Author

Christian Kassel, Aug 13 2025

Keywords

Comments

a(n) is the value at q = (5 + sqrt(21))/2 of C_n(q)/(q^{n-1}(q - 1)^2), where C_n(q) is the number of codimension n ideals of the algebra of two-variable Laurent polynomials over a finite field of order q. The number C_n(q) is a palindromic polynomial of degree 2n with integer coefficients in the variable q and it is divisible by (q-1)^2.

Crossrefs

Programs

  • Mathematica
    nmax = 25; Rest[CoefficientList[Series[(Product[(1 - x^k)^2/(1 - 5*x^k + x^(2*k)), {k, 1, nmax}] - 1)/3, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 14 2025 *)

Formula

G.f.: (Product_{k>=1} (1 - x^k)^2/(1 - 5*x^k + x^(2*k)) - 1)/3
a(2^k) = A030221(2^k-1). (Follows from Cor. 4.5 of Kassel and Reutenauer (2025).)
a(n) ~ (3 + sqrt(21))^(2*n-1) / (2^(2*n-1) * 3^n). - Vaclav Kotesovec, Aug 14 2025

A107389 Expansion of x*(1-6*x+7*x^2)/( (1-x)*(1+x)*(1-5*x+x^2)).

Original entry on oeis.org

0, 1, -1, 2, 5, 31, 144, 697, 3335, 15986, 76589, 366967, 1758240, 8424241, 40362959, 193390562, 926589845, 4439558671, 21271203504, 101916458857, 488311090775, 2339638995026, 11209883884349, 53709780426727, 257339018249280, 1232985310819681, 5907587535849119
Offset: 0

Views

Author

Roger L. Bagula, May 24 2005, corrected Sep 04 2008

Keywords

Programs

  • Mathematica
    LinearRecurrence[{5,0,-5,1},{0,1,-1,2},30] (* Harvey P. Dale, Sep 17 2020 *)
  • PARI
    concat(0,Vec((1-6*x+7*x^2)/(1-x)/(1+x)/(1-5*x+x^2)+O(x^98))) \\ Charles R Greathouse IV, Jan 25 2012

Formula

a(n)-a(n-2) = A030221(n-3), n>2. - R. J. Mathar, Dec 17 2017

Extensions

Irregular sign at a(2) switched by R. J. Mathar, Jan 24 2012
Previous Showing 31-35 of 35 results.