A221365
The simple continued fraction expansion of F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = 1/2*(5 - sqrt(21)).
Original entry on oeis.org
1, 3, 1, 21, 1, 108, 1, 525, 1, 2523, 1, 12096, 1, 57963, 1, 277725, 1, 1330668, 1, 6375621, 1, 30547443, 1, 146361600, 1, 701260563, 1, 3359941221, 1, 16098445548, 1, 77132286525, 1, 369562987083, 1, 1770682648896, 1
Offset: 0
F(1/2*(5 - sqrt(21))) = 1.25274 83510 08359 27965 ... = 1 + 1/(3 + 1/(1 + 1/(21 + 1/(1 + 1/(108 + 1/(1 + 1/(525 + ...))))))).
F((1/2*(5 - sqrt(21)))^2) = 1.04545 84663 16495 30047 ... = 1 + 1/(21 + 1/(1 + 1/(525 + 1/(1 + 1/(12096 + 1/(1 + 1/(277725 + ...))))))).
F((1/2*(5 - sqrt(21)))^3) = 1.00917 43188 83793 73068 ... = 1 + 1/(108 + 1/(1 + 1/(12096 + 1/(1 + 1/(1330668 + 1/(1 + 1/(146361600 + ...))))))).
-
LinearRecurrence[{0,6,0,-6,0,1},{1,3,1,21,1,108},40] (* Harvey P. Dale, Jun 06 2023 *)
A334673
a(n) = 23*a(n-1) - a(n-2) + 1 for n > 1, a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 24, 552, 12673, 290928, 6678672, 153318529, 3519647496, 80798573880, 1854847551745, 42580695116256, 977501140122144, 22439945527693057, 515141245996818168, 11825808712399124808, 271478459139183052417, 6232178751488811080784, 143068632825103471805616
Offset: 0
Cf.
A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).
-
CoefficientList[Series[x/((1 - x) (x^2 - 23 x + 1)), {x, 0, 18}], x] (* Michael De Vlieger, Apr 07 2021 *)
a(13)-a(14) corrected and more terms added by
Alois P. Heinz, Sep 11 2020
A340475
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Product_{a=1..n} Product_{b=1..k} (4*sin(a*Pi/(2*n+1))^2 + 4*sin(b*Pi/(2*k+1))^2).
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 29, 29, 1, 1, 139, 500, 139, 1, 1, 666, 8329, 8329, 666, 1, 1, 3191, 138301, 463736, 138301, 3191, 1, 1, 15289, 2295701, 25543057, 25543057, 2295701, 15289, 1, 1, 73254, 38105729, 1404312491, 4614756624, 1404312491, 38105729, 73254, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
1, 6, 29, 139, 666, ...
1, 29, 500, 8329, 138301, ...
1, 139, 8329, 463736, 25543057, ...
1, 666, 138301, 25543057, 4614756624, ...
-
default(realprecision, 120);
{T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*sin(a*Pi/(2*n+1))^2+4*sin(b*Pi/(2*k+1))^2)))}
A387017
Expansion of (Product_{k>=1} (1 - x^k)^2/(1 - 5*x^k + x^(2*k)) - 1)/3.
Original entry on oeis.org
1, 6, 28, 139, 660, 3192, 15260, 73254, 350848, 1681650, 8056608, 38604748, 184963130, 886226880, 4246152960, 20344613659, 97476826932, 467039887908, 2237722185188, 10721572793580, 51370139753240, 246129134364792, 1179275522335680, 5650248517615128
Offset: 1
- Christian Kassel and Christophe Reutenauer, Counting the ideals of given codimension of the algebra of Laurent polynomials in two variables, arXiv:1505.07229 [math.AG], 2015-2016; Michigan Math. J. 67 (2018), 715-741.
- Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016; The Ramanujan Journal 46 (2018), 633-655.
- Christian Kassel and Christophe Reutenauer, Pairs of intertwined integer sequences, arXiv:2507.15780 [math.NT], 2025.
-
nmax = 25; Rest[CoefficientList[Series[(Product[(1 - x^k)^2/(1 - 5*x^k + x^(2*k)), {k, 1, nmax}] - 1)/3, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 14 2025 *)
A107389
Expansion of x*(1-6*x+7*x^2)/( (1-x)*(1+x)*(1-5*x+x^2)).
Original entry on oeis.org
0, 1, -1, 2, 5, 31, 144, 697, 3335, 15986, 76589, 366967, 1758240, 8424241, 40362959, 193390562, 926589845, 4439558671, 21271203504, 101916458857, 488311090775, 2339638995026, 11209883884349, 53709780426727, 257339018249280, 1232985310819681, 5907587535849119
Offset: 0
-
LinearRecurrence[{5,0,-5,1},{0,1,-1,2},30] (* Harvey P. Dale, Sep 17 2020 *)
-
concat(0,Vec((1-6*x+7*x^2)/(1-x)/(1+x)/(1-5*x+x^2)+O(x^98))) \\ Charles R Greathouse IV, Jan 25 2012
Irregular sign at a(2) switched by R. J. Mathar, Jan 24 2012
Comments