cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A121682 Triangle read by rows: T(i,j) = (T(i-1,j) + i)*i.

Original entry on oeis.org

1, 6, 4, 27, 21, 9, 124, 100, 52, 16, 645, 525, 285, 105, 25, 3906, 3186, 1746, 666, 186, 36, 27391, 22351, 12271, 4711, 1351, 301, 49, 219192, 178872, 98232, 37752, 10872, 2472, 456, 64, 1972809, 1609929, 884169, 339849, 97929, 22329, 4185, 657, 81, 19728190, 16099390, 8841790, 3398590, 979390, 223390, 41950, 6670, 910, 100
Offset: 1

Views

Author

Thomas Wieder, Aug 15 2006

Keywords

Comments

The first column is A030297 = a(n) = n*(n+a(n-1)). The main diagonal are the squares A000290 = n^2. The first lower diagonal (6,21,52,...) is A069778 = q-factorial numbers 3!_q. See also A121662.

Examples

			Triangle begins:
      1
      6     4
     27    21     9
    124   100    52   16
    645   525   285  105  25
   3906  3186  1746  666  186  36
  27391 22351 12271 4711 1351 301 49
  ...
		

References

  • T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.

Crossrefs

Row sums give A337001.

Programs

  • Maple
    T:= proc(i, j) option remember;
          `if`(j<1 or j>i, 0, (T(i-1, j)+i)*i)
        end:
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Jun 22 2022
  • Mathematica
    T[n_, k_] /; 1 <= k <= n := T[n, k] = (T[n-1, k]+n)*n;
    T[, ] = 0;
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 17 2022 *)
  • Python
    def T(i, j): return (T(i-1, j)+i)*i if 1 <= j <= i else 0
    print([T(r, c) for r in range(1, 11) for c in range(1, r+1)]) # Michael S. Branicky, Jun 22 2022

Extensions

Edited by N. J. A. Sloane, Sep 15 2006
Formula in name corrected by Alois P. Heinz, Jun 22 2022

A107283 E.g.f. exp(x)*(x^2+x+2)/(1-x).

Original entry on oeis.org

2, 5, 16, 59, 254, 1297, 7820, 54791, 438394, 3945629, 39456392, 434020435, 5208245366, 67707189929, 947900659204, 14218509888287, 227496158212850, 3867434689618741, 69613824413137664, 1322662663849615979, 26453253276992319982, 555518318816838720065
Offset: 0

Views

Author

Creighton Dement, May 19 2005

Keywords

Crossrefs

Cf. A030297.

Programs

  • Mathematica
    CoefficientList[Series[E^x*(x^2+x+2)/(1-x), {x, 0, 20}], x]* Table[n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 17 2012 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x)*(x^2+x+2)/(1-x))) \\ Joerg Arndt, May 15 2013

Formula

Recurrence: (4*n+3)*a(n) = (4*n^2 + 7*n + 20)*a(n-1) - (4*n^2 + 16*n - 11)*a(n-2) + 9*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 4*e*n!. - Vaclav Kotesovec, Oct 17 2012

A371831 a(n) = numerator(Sum_{k=1..n} k^2/k!).

Original entry on oeis.org

0, 1, 3, 9, 31, 43, 217, 3913, 9133, 73067, 1972819, 6576067, 24112247, 372017527, 1612075951, 157983443203, 7109254944151, 37916026368811, 644572448269793, 34806912206568841, 2422459091299663, 7775794614048301, 277759159408419360043, 2036900502328408640323, 46848711553553398727437
Offset: 0

Views

Author

Stefano Spezia, Apr 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Numerator[(2(E*Gamma[n+1,1]-1)-n)/n!]; Array[a,25,0]
  • PARI
    a(n) = numerator(sum(k=1, n, k^2/k!)); \\ Michel Marcus, Apr 07 2024

Formula

a(n) = numerator((2*(e*Gamma(n+1, 1) - 1) - n)/n!).
a(n) = numerator(A030297(n)/n!).
Limit_{n->oo} a(n)/A371832(n) = 2*e = A019762.

A371832 a(n) = denominator(Sum_{k=1..n} k^2/k!).

Original entry on oeis.org

1, 1, 1, 2, 6, 8, 40, 720, 1680, 13440, 362880, 1209600, 4435200, 68428800, 296524800, 29059430400, 1307674368000, 6974263296000, 118562476032000, 6402373705728000, 445586448384000, 1430277488640000, 51090942171709440000, 374666909259202560000, 8617338912961658880000
Offset: 0

Views

Author

Stefano Spezia, Apr 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Denominator[(2(E*Gamma[n+1,1]-1)-n)/n!]; Array[a,25,0]
  • PARI
    a(n) = denominator(sum(k=1, n, k^2/k!)); \\ Michel Marcus, Apr 07 2024

Formula

a(n) = denominator((2*(e*Gamma(n+1, 1) - 1) - n)/n!).
a(n) = denominator(A030297(n)/n!).
Limit_{n->oo} A371831(n)/a(n) = 2*e = A019762.

A348311 a(n) = n! * Sum_{k=1..n} (-1)^k * (k-2) / (k-1)!.

Original entry on oeis.org

0, 1, 2, 3, 20, 85, 534, 3703, 29672, 266985, 2669930, 29369131, 352429692, 4581585853, 64142202110, 962133031455, 15394128503504, 261700184559313, 4710603322067922, 89501463119290195, 1790029262385804260, 37590614510101889061, 826993519222241559782
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[(-1)^k (k - 2)/(k - 1)!, {k, 1, n}], {n, 0, 22}]
    nmax = 22; CoefficientList[Series[x (1 + x) Exp[-x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = n!*sum(k=1, n, (-1)^k * (k-2) / (k-1)!); \\ Michel Marcus, Oct 20 2021

Formula

E.g.f.: x * (1 + x) * exp(-x) / (1 - x).
a(0) = 0; a(n) = n * (a(n-1) + (-1)^n * (n-2)).
a(n) = n * (2 * A000166(n-1) + (-1)^n).

A374844 a(n) = n! * Sum_{k=1..n} k^k / k!.

Original entry on oeis.org

0, 1, 6, 45, 436, 5305, 78486, 1372945, 27760776, 637267473, 16372674730, 465411092641, 14501033559948, 491388542871577, 17991446425760094, 707765586767260785, 29770993461985724176, 1333347150740094075169, 63346656788618230928466
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2024

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^n end: a(0):= 0:
    seq(a(n), n=0..23);  # Alois P. Heinz, Jul 22 2024
  • PARI
    a(n) = n!*sum(k=1, n, k^k/k!);

Formula

a(0) = 0; a(n) = n*a(n-1) + n^n.
a(n) = A277506(n) - n!.
E.g.f.: -1/( (1 + 1/LambertW(-x)) * (1 - x) ).
a(n) ~ n^n / (1 - exp(-1)). - Vaclav Kotesovec, Jul 22 2024
Previous Showing 11-16 of 16 results.